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A B S T R A C T

Understanding the dynamics of tidal rivers and estuaries is critical for reliable water management. Recently,
the use of Machine Learning (ML) has increased in favor of hydrologic and hydraulic models. The advantages
of ML over physically based models are most evident in modeling complex and nonlinear hydrologic processes
and inverse problems. This study provides a critical review of ML approaches for forecasting, reconstruction,
and establishment of stage-discharge relationships in tidal rivers and estuaries characterized by nonlinear
interaction between the river and coastal processes. Gaps in this research area and the limited number of stage-
discharge studies are identified and explained. The advantages and limitations of each approach are discussed
from a critical perspective, and suggestions are made for future research directions. Advanced Recurrent Neural
Networks (RNNs) and hybrid modeling systems combining physically based models with ML appear to be the
most promising approaches for modeling complex physical processes in these environments.
1. Introduction

Tidal rivers and estuaries are an important and vulnerable part
of the human ecosystem. Various natural disasters, such as floods
and droughts, as well as human activities, negatively affect these
environments (Chen et al., 2020; Hosseiny, 2021). Climate change,
urbanization, and migration trends are likely to exacerbate extreme
weather events, highlighting the critical need for water and coastal
management plans to protect water security, economies, and public
health (Pörtner et al., 2022). One of the most noticeable consequences
of ongoing climate change is sea level rise, but changes in the frequency
and intensity of extreme events, including storm surges and river
flows, are also noticeable (Pörtner et al., 2022). Water management
plans are constantly evolving, with a focus on preventing, mitigating,
and preparing for water-related risks. Therefore, accurate and reliable
monitoring, modeling, and forecasting systems are essential for the
sustainability and protection of tidal rivers and estuaries.

Hydrologic research aimed toward tidal rivers and estuaries has
improved in recent years through the use of data-driven approaches,
particularly machine learning models (ML) (Hidayat et al., 2014; Wei,
2015; Guo et al., 2021). Traditionally, two main modeling approaches
have been used: (a) physically-based hydraulic models (Sivakumar
et al., 2002), and (b) conceptual hydrologic models (Wei et al., 2012).
While hydraulic models simulate physical processes by solving complex
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differential equations (Chau, 2006b), hydrologic models provide a sim-
plified representation of these laws (Sit et al., 2020; Zounemat-Kermani
et al., 2020).

The main advantage of hydraulic and hydrologic models compared
to ML is the ability to understand the physical mechanisms (Sivakumar
et al., 2002; Zaherpour et al., 2019). However, these benefits come
with numerous limitations. High computational costs (Zhang et al.,
2016) and mandatory model calibration (Zhang et al., 2016; Guo
et al., 2021) are just some of the potential problems. Other challenges
specific to tidal rivers and estuaries include long-term data needs for
tidal analysis (Zhang et al., 2016), expensive or inaccessible field
monitoring (Tauro et al., 2018), complex nonlinear interaction between
tides and river flows (Hidayat et al., 2014), inability to account for
all relevant meteorological factors (Zhang et al., 2016), highly dy-
namic processes (Chang and Chen, 2003), and the need for continuous,
high-resolution water level and discharge data to define boundary
conditions (Bhar and Bakshi, 2020). Despite their complexity, these
traditional models may not always accurately represent natural pro-
cesses due to nonlinear interactions between tides, waves, river flow,
temperature, water density, and river geometry (Tazin et al., 2019).
Furthermore, standard hydraulic models cannot be applied directly for
inverse hydraulic problems (identification of unknown flow conditions
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or fluid properties based on an observed free surface response), and
must be combined with other approaches (Sellier, 2016).

On the other hand, simple statistical models, such as Auto Regres-
sive (AR), Moving Average (MA), Auto Regressive Moving Average
(ARMA), Auto Regressive Integrated Moving Average (ARIMA), Linear
Regression (LR), and Multiple Linear Regression (MLR) have been
used for water level and discharge prediction since 1970 (Valipour
et al., 2012, 2013; Valipour, 2015). However, these models struggle
to capture the nonstationary and nonlinear processes specific to tidal
rivers and estuaries.

Machine learning offers a powerful alternative to physical-based
models and improves simple statistical approaches by achieving better
performance and increasing overall accuracy (Zounemat-Kermani et al.,
2020). ML models can be further enhanced by combining them with
other computational techniques to create hybrid models (Nourani et al.,
2014). The idea of hybrid models is to combine ML with optimiza-
tion techniques, signal processing, statistical methods, preprocessing,
or physical understanding of the underlying processes. Additionally,
different ML methods can be combined for improved efficiency (Zhang
et al., 2023a).

Numerous studies have demonstrated the effectiveness of ML for
simulating hydrologic and hydrodynamic processes
(Oyebode and Stretch, 2019; Zounemat-Kermani et al., 2020). ML
methods have been successfully applied to diverse hydrological prob-
lems, including flood forecasting (Mosavi et al., 2018; Zounemat-
Kermani et al., 2020), groundwater level estimation (Rajaee et al.,
2019), water resources management (Sit et al., 2020), dams and reser-
voir management (Allawi et al., 2018), sediment transport predic-
tion (Afan et al., 2016; Rajaee and Jafari, 2020; Zounemat-Kermani
et al., 2020), water temperature prediction (Zhu and Piotrowski, 2020),
water quality modeling (Chau, 2006a; Tung et al., 2020), sewer flow
modeling (Zounemat-Kermani et al., 2020), and more. A key advantage
of ML is its ability to describe the spatio-temporal variability of complex
inputs without requiring a complete description of the underlying
physical process (Zhou et al., 2020). Additionally, ML approaches are
well-suited for understanding and describing nonlinear relationships
between inputs and outputs (Guo et al., 2021).

Several review studies have explored ML for water level and stream-
flow forecasting or reconstruction. Yaseen et al. (2015) reviewed stud-
ies (2000–2015) on artificial intelligence (AI) for streamflow mod-
eling and forecasting in rivers. Zhang et al. (2018) compared data-
driven models for short-term streamflow forecasting, particularly rel-
evant for data-scarce regions. Hamzah et al. (2020) reviewed de-
terministic imputation methods and ML approaches for streamflow
reconstruction. Zhu et al. (2020) reviewed ML models for lake water
level forecasting, discussing advantages, limitations, and efficacy for
these highly stochastic and nonlinear processes. Wee et al. (2021)
provided a similar review for reservoir water level forecasting us-
ing ML models. Finally, Ibrahim et al. (2022) reviewed hybrid ML
approaches (2009–2020) for hydrological streamflow forecasting in
rivers, reservoirs, and lakes.

While these review studies on ML approaches for water level and
streamflow forecasting cover freshwater environments, including rivers,
reservoirs, and lakes, a systematic review specifically aimed at tidal
rivers and estuaries remains absent. Unlike inland systems with rel-
atively predictable flows and homogeneous salinity, tidal rivers and
estuaries experience a dynamic interplay between freshwater flow, salt-
water intrusion, and tides. This results in salinity gradients, turbulent
mixing zones, and complex flow regimes. Therefore, coastal studies
require higher temporal resolution (hourly scale) to capture these
interactions compared to daily or monthly scales often used for inland
water systems. Existing reviews on inland water systems (Yaseen et al.,
2015; Zhu et al., 2020; Wee et al., 2021; Ibrahim et al., 2022) confirm
this distinction, with the majority of studies using daily, weekly, or
longer time frequencies.

A lack of reviews of ML approaches for tidal rivers and estuaries
highlights a crucial knowledge gap. This review aims to address this
2

gap by providing:
• A comprehensive examination of ML approaches for water level
and discharge assessments in tidal rivers and estuaries.

• A critical evaluation of current methodologies and discussion of
their advantages and limitations.

• Suggestions for future research directions to enable potential
improvements.

By shifting the focus from inland water systems to complex coastal
environments, this review offers novel insights into the full potential
of ML approaches for coastal water management, specifically for water
level and discharge estimation in tidal rivers and estuaries. This knowl-
edge can enhance the sustainability of water management practices,
improve preparedness for natural disasters, and ultimately create a
more resilient coastal infrastructure.

The remainder of the paper is organized as follows. Section 2 de-
scribes the importance of hydrological parameters — water levels and
discharges. Section 3.1 details the selection process of relevant studies.
Section 3.2 presents a classification of the various ML approaches
used for hydrologic processes in tidal rivers and estuaries. Sections
Section 3.3, 3.4, and 3.5 summarize studies on developing and applying
ML for forecasting, reconstruction, and establishing stage-discharge
relationships, in three phases, as pioneering work, early applications,
and recent advancements. Section 4 addresses the shortage of existing
studies for solving the mentioned problems for specific periods and
discusses the reviewed ML models according to their advantages and
limitations. The final section summarizes the entire study, provides the
main conclusions, identifies knowledge gaps, and offers suggestions for
future research and improvements.

2. Hydrological parameters in tidal rivers and estuaries

Tidal rivers and estuaries are influenced by multiple forcing mech-
anisms that have different natural sources. External influences from
the sea (sea levels, tides, waves), land (river flow), and the atmo-
sphere (precipitation, winds, pressure) interact with internal water
properties (temperature, salinity) and channel morphology (Geyer and
MacCready, 2014). In addition, all of these parameters may become
variable and nonstationary over longer periods of time as a result of cli-
mate change (Pörtner et al., 2022). Because of the multiple influencing
factors, hydrologic processes in tidal rivers and estuaries are considered
nonlinear, complex, and challenging to model (Chen et al., 2012; Gan
et al., 2021). Therefore, selecting appropriate modeling approaches that
consider the specific characteristics of each environment is crucial.

An example of the hydrologic parameters of the Neretva River,
Croatia, is shown in Fig. 1. This figure shows a time series of measured
water levels at three stations along this salt-wedge estuary (near the
river mouth, at Opuzen station, located 11.75 km upstream from the
mouth, and at Metković station, located 20.65 km upstream from the
mouth). The measured data have a temporal resolution of one hour.
This figure illustrates the effects of tidal waves propagating 20 km
upstream, as well as the interaction between tidal dynamics (primarily
noticeable as inter-daily oscillations) and river discharge (characterized
by a seasonal variability) in the middle part of the estuary (Krvavica
et al., 2021a).

This review focuses on two key hydrological parameters: water
levels (river stage) and discharges (streamflow, flow rate), and their
dynamic response to both freshwater inflows and tidal forcing. Each pa-
rameter serves a distinct purpose in hydrological analysis. Water levels
are crucial for flood forecasting and warning systems, while discharges
are often the primary variable for developing predictive or reanalysis
models (Yu et al., 2006), water resource evaluation (water supply,
irrigation), and controlling processes within river ecosystems (Doyle
et al., 2005).

2.1. Water levels in tidal rivers and estuaries

Water level, also known as river stage, is a crucial indicator for

understanding river dynamics (Ghorbani et al., 2016). Water level
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Fig. 1. Example of water level and flow rate time series measured at the river mouth, station Opuzen (11.75 km from the mouth), and station Metković (20.65 km from the
mouth) in the Neretva River, Croatia. Modified from (Krvavica et al., 2021b).
estimation is critical for predicting extreme events like floods (Gan
et al., 2021). Most commonly, the water level parameter is used for
flood warning systems (Yu et al., 2006).

Water level is typically measured at gauging stations along a river
and reflects the height of the water surface relative to a pre-established
reference level. Various instruments are used for this purpose, including
water level gauges, pressure sensors (Sauer and Turnipseed, 2010),
radars, and satellite altimetry data (Tauro et al., 2018).

Predicting water level variations is relatively straightforward in
river sections outside the tidal limit. However, tidal rivers present
a significant challenge due to the complex interaction of tidal wave
dynamics with river flow (Chen et al., 2020). The propagation of tidal
waves is affected by the shallow water effect (Chen et al., 2020) and fur-
ther modified by the channel geometry and the nonstationary stream-
flow, further complicating modeling efforts (Supharatid, 2003a; Chen
et al., 2020, 2012). The propagation of salt-wedge in highly-stratified
estuaries also significantly modifies the water levels along the river
channel (Krvavica et al., 2021a). In addition, limited accessibility in
some locations can pose challenges for water level measurement (Bhar
and Bakshi, 2020).

2.2. Discharges in tidal rivers and estuaries

Discharge, also known as streamflow or flow rate, is another crucial
factor in tidal rivers and estuaries. It reflects the general response
of the watershed (hydrologic processes) and the attenuation of flow
(hydraulic processes) (Ghorbani et al., 2016). Unlike water level, dis-
charge cannot be directly measured using ground-based instruments or
satellite sensors. Therefore, it is typically estimated based on directly
measured parameters like water depth and flow velocity (Tauro et al.,
2018).

The simplest and least expensive method for estimating river dis-
charges are Rating Curves (RC), which define a functional dependence
3

between river level and discharge at a given channel cross-section based
on individual flow measurements (Jones et al., 2019). However, RCs
become unreliable in tidally influenced sections due to the complex
interaction between river discharge, downstream sea level, and propa-
gating tidal waves, leading to a nonlinear relationship between water
level and discharge (Cai et al., 2014; Jones et al., 2019). While non-tidal
river level data can be used to estimate downstream discharges, such
methods can be inaccurate, especially in lowland systems where saltwa-
ter intrusion and tidal influence can extend 10–100 km inland (Geyer
and MacCready, 2014; Krvavica et al., 2021a).

The most reliable method for continuous measurement of discharge
in estuaries and tidal rivers involves fixed acoustic instruments (Hoitink
et al., 2009; Sassi et al., 2011), typically Horizontal Acoustic Doppler
Current Profiler (H-ADCP) (Garel and D’alimonte, 2017), which is
a reliable but costly approach. However, under stratified conditions,
interpolation of measured velocities across the channel cross-section
provides absolute flow rate rather than river discharge (Krvavica et al.,
2021b). Therefore, this has led to the recent exploration of ML models
for discharge estimation (Hidayat et al., 2014).

3. Overview of machine learning approaches

3.1. Selection of relevant studies

Web of Science (WoS) database served as the primary search engine
to identify relevant studies on developing or applying machine learning
for modeling water levels and discharges in tidal rivers and estuaries.
Keywords were chosen based on relevant hydraulic parameters (various
technical terms used for water level and discharge), area of study (various
technical terms used for tidal rivers or estuaries), and methodology (var-
ious technical terms used for machine learning). The following search
strategy was used for the WoS TOPIC section, which searches titles,
abstracts, and keywords:
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Fig. 2. Annual and cumulative number of ML publications related to water levels and discharge in tidal rivers and estuaries, found in WoS (according to selected keywords) and
presented by year of publication (1992–2023).
(‘‘level’’ or ‘‘levels’’ or ‘‘stage’’ or ‘‘discharge’’ or ‘‘discharges’’ or ‘‘flow’’
or ‘‘flows’’ or ‘‘streamflow’’ or ‘‘stage-discharge’’ or ‘‘rating curve’’ or ‘‘rating
curves’’) and (‘‘tidal river’’ or ‘‘tidal rivers’’ or ‘‘estuary’’ or ‘‘estuaries’’ or
(‘‘tides’’ and ‘‘river’’) or (‘‘tides’’ and ‘‘rivers’’) or (‘‘sea level’’ and ‘‘river’’)
or (‘‘sea levels’’ and ‘‘rivers’’)) and (‘‘machine learning’’ or ‘‘artificial
intelligence’’ or ‘‘neural network’’ or ‘‘neural networks’’ or ‘‘ANN’’ or ‘‘SVR’’
or ‘‘deep learning’’ or ‘‘data driven’’).

This search resulted in 389 documents (articles and review papers)
published in the WoS database. Fig. 2 shows these studies by year
of publication, indicating that the subject of this review has become
increasingly popular in recent years. More studies were conducted and
published in the last five years than in the previous 27 years.

Many of the initial 389 retrieved documents were not directly rele-
vant to modeling, predicting, or forecasting water levels and discharges
in tidal rivers and estuaries. A significant portion focused on estimating
or forecasting other processes or parameters, like sediment transport,
saltwater intrusion, water quality, or biological indicators. Addition-
ally, some studies on water levels or discharges did not consider the
crucial interaction between tidal dynamics and river flow. Therefore,
only 35 papers (all published within the last 20 years) were selected
for further review and detailed analysis after the manual screening of
the abstracts.

ML approaches from these studies are classified into the following
categories:

(a) statistical models
(b) classifiers, kernel methods, and ensemble
(c) shallow neural network
(d) recurrent neural networks
(e) hybrid models

Furthermore, the studies are grouped and summarized based on the
type of analysis:

(a) forecasting studies
(b) reconstruction studies
(c) stage-discharge relationship studies
4

3.2. Categories of machine learning algorithms

The identification of an appropriate ML approach for estimating
the river flow and water level has been the subject of several recent
reviews (Yaseen et al., 2015; Mosavi et al., 2018; Sit et al., 2020;
Zounemat-Kermani et al., 2020). However, this review focuses on ML
approaches developed specifically for tidal rivers and estuaries. Table 1
shows the classification of the 35 selected studies according to ML
category. Commonly used ML approaches fall into the following five
categories:

1. Simple statistical approach: These methods include Linear Re-
gression (LR), Multiple Linear Regression (MLR), Multiple Poly-
nomial Regression (MPR), Locally Weighted Regression (LWR),
AR, Locally Weighted Least Squares (LOESS), Multivariate Adap-
tive Regression Splines (MARS), and Bayesian Ridge Regres-
sion (BRR). In ML studies, they often serve as baseline models
for comparison (Wei, 2015; Pasupa and Jungjareantrat, 2016;
Thanh et al., 2022) or components within hybrid modeling
approaches (Chen et al., 2020).

2. Classifiers, kernel, and ensemble approach: This category in-
cludes Decision Tree (DT), Gradient Boosted Decision Tree
(GBDT), K-Nearest Neighbors (KNN), Support Vector Regres-
sion (SVR), Random Forest (RF), and Light Gradient Boosting
Machine (LGBM). These methods generally outperform simple
statistical approaches due to their ability to handle nonlinear
processes (Wei, 2015; Pasupa and Jungjareantrat, 2016).

3. Shallow neural network (SNN) approach: Feed-Forward Neural
Networks (FFNN), Feed-Forward Backpropagation (FFBP), Ra-
dial Basis Function Neural Networks (RBFNN), and Multilayer
Perceptrons (MLP) are all considered Shallow Neural Networks
(SNNs) with one or more hidden layers (Supharatid, 2003b;
Tsai et al., 2012; Adib, 2008; Bhar and Bakshi, 2020; Guillou
and Chapalain, 2021). Unlike Deep Neural Networks (DNNs),
SNNs may struggle with modeling highly complex time series
problems. However, they are a popular choice due to their ability
to capture nonlinear relationships between input and output
data without requiring explicit knowledge of the underlying
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Table 1
Reviewed studies on water level and discharge estimation in tidal rivers and estuaries classified by ML category.

Author and year Simple Classifiers, kernel SNN RNN Hybrid
statistical and ensemble approach approach approach
approach approach

Supharatid (2003a) ✓

Chang and Chen (2003) ✓

Habib and Meselhe (2006) ✓ ✓

Adib (2008) ✓

Wei and Hsu (2008) ✓

Chinh et al. (2009) ✓

Chen et al. (2012) ✓

Tsai et al. (2012) ✓ ✓ ✓

Wei (2012) ✓ ✓

Yang et al. (2013) ✓

Pierini et al. (2013) ✓

Liu and Chung (2014) ✓ ✓

Gu et al. (2014) ✓

Hidayat et al. (2014) ✓ ✓

Wolfs and Willems (2014) ✓ ✓

Wei (2015) ✓ ✓ ✓

Pasupa and Jungjareantrat (2016) ✓ ✓

Ahmed et al. (2017) ✓

Garel and D’alimonte (2017) ✓

Sung et al. (2017) ✓

Jung et al. (2018) ✓

Yoo et al. (2020) ✓

Chen et al. (2020) ✓

Bhar and Bakshi (2020) ✓

Guo et al. (2021) ✓

Chen et al. (2021) ✓ ✓ ✓

Guillou and Chapalain (2021) ✓ ✓

Gan et al. (2021) ✓

Sampurno et al. (2022) ✓ ✓

Thanh Hoan et al. (2022) ✓

Thanh et al. (2022) ✓ ✓

Zhang et al. (2023b) ✓

Fei et al. (2023) ✓

Zhang et al. (2023a) ✓ ✓

Vu et al. (2023) ✓
hydraulic processes (Chen et al., 2012; Hidayat et al., 2014; Guo
et al., 2021).

4. Recurrent neural network (RNN) approach: Gated Recurrent
Unit (GRU) and Long Short-Term Memory (LSTM) networks are
advanced types of RNNs that can effectively model long-term
dependencies within data (Yoo et al., 2020). LSTM and GRU are
better suited for processing highly complex datasets compared
to SNN and simple RNN architectures, which are known to have
problems with vanishing gradients and optimization (Vu et al.,
2023; Yoo et al., 2020).

5. Hybrid approach: Hybrid models combine ML models with other
techniques like signal processing (Discrete/Continuous Wavelet
Transform), statistical methods (Least Squares, Cross/Auto-
correlation, Partial Auto-correlation), data preprocessing (MA,
Exponential Moving Average (EMA)), optimization algorithms
(Bayesian optimization (BO), Genetic Algorithms (GA), classi-
fiers (Classification And Regression Trees (CART)), fuzzy logic
(Adaptive Neuro-Fuzzy Inference System (ANFIS)), bagging me-
thods, harmonic analysis (NS_TIDE), Artificial Neural Networks
(ANNs), and even numerical models (1D, 2D, 3D hydrodynamic
models). The primary goal of hybrid modeling is to utilize
the strengths of each approach and improve their predictive
capabilities (Sung et al., 2017; Fei et al., 2023).

More than half of the reviewed studies rely on SNNs, highlighting their
prevalence in this field. However, hybrid techniques are also gaining
popularity for water level and discharge estimation in tidal rivers and
estuaries.

3.3. Water level and discharge forecasting studies

This section provides an overview of forecasting problems in tidal
rivers and estuaries. In general, forecasting studies solve a time series
5

problem by predicting unknown hydrologic parameters in advance
using known past values. Most studies in this category focused on
forecasting water levels, with the exception of Hidayat et al. (2014)
and Vu et al. (2023), which considered discharges. An overview of the
reviewed studies is presented in Table 2, which summarizes key details,
including authors, year of publication, time scale, input and output
parameters, ML method, and evaluation criteria.

3.3.1. Pioneering work (2000–2011)
One of the first applications of a Neural Network (NN) model for

forecasting in tidal rivers was presented by Supharatid (2003b). The
author constructed a Multilayer Feed-Forward (MLFF) approach using
a Levenberg–Marquardt (LM) training algorithm to forecast tidal fluc-
tuations at the Chao Phraya River estuary in Thailand. Two forecasting
scenarios were considered: a) day, week, and month, and b) real-time
(24 h ahead). Overall, this study showed that the LM training algorithm
outperformed the back-propagation (BP) algorithm, more commonly
used at the time. The study demonstrated the effectiveness of NNs for
long-term water level prediction without requiring explicit computation
of tidal harmonic constituents.

In the same year, Chang and Chen (2003) proposed a hybrid
model combining a supervised RBFNN with a fuzzy min–max clustering
method. This model was applied to forecast water levels of the Tanshui
River in Taiwan, considering tides and flood events during typhoons.
The input data considered are water level, time, lunar day, and lunar
month. The results showed that RBFNNs are efficient tools for forecast-
ing water levels up to one hour in advance during tidal and typhoon
effects.

3.3.2. Early applications (2012–2017)
Tsai et al. (2012) introduced a novel approach by combining the de-
cision tree classifier CART with ANN to form a CART-ANN model. This
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Table 2
Reviewed forecasting studies in more detail.

Author and year Time scale Input Output Method Goodness of fit
indices

Supharatid (2003a) In: hourly, Scenario 1: Tidal level MLFF EI, RMSE,
out: hourly, water level MAD
weekly,
monthly
In: hourly, Scenario 2: tidal level MLFF EI, RMSE,
out: hourly tidal level MAD

Chang and Chen (2003) In: hourly, Lunar month, Water level RBFNN R, RMSE
out: hourly lunar day,

time,
water level

Tsai et al. (2012) In: hourly, Precipitation, Water level CART-ANN MSE, MAE
out: hourly water level, (MLP, RBF),

historic releases benchmark
models: CART,
BPNN, RBFNN

Wei (2012) In: hourly, Water level, Water level WSVM, RMSE
out: hourly average precipitation, SVM

reservoir releases

Yang et al. (2013) In: daily, Water level Water level CDW-NF, RMSE, MAE,
out: daily (average value CDW-ANN, R2

of two time CDW-LR
high-tide level)

Hidayat et al. (2014) In: hourly, Water level, Discharge MLP RMSE, R2,
out hourly: at-site historical NSE

discharge data,
predicted tide
level

Wei (2015) In: hourly Water level, Water stage LWR, KNN, CC, MAE,
out: hourly average LR, SVR, RMSE, AIC,

precipitation, ANN computational
reservoir releases, efficiency
tidal effects

Pasupa and Jungjareantrat (2016) In: hourly, Water level Water level LR, KR, SVR, RMSE
out: hourly KNN, RF

Ahmed et al. (2017) In: hourly, Daily, morning, Tide level SVR + (MA, MAE
out: daily and night tide EMA)

data

Sung et al. (2017) In: hourly, water level, Water level MLP RMSE, R2,
out: hourly rainfall NSE

Jung et al. (2018) In: hourly, Dam discharges, Water level LSTM RMSE,
out: hourly water level, NSE

predicted tide
level

Yoo et al. (2020) In: hourly, Precipitation, Water surface LSTM RMSE, PE,
out: hourly discharge, elevation NSE

tide level

Chen et al. (2020) In: hourly, Discharge, Water level NS_TIDE + AR RMSE
out: hourly tides

Guo et al. (2021) In: hourly, Rainfall, Water level BO + SVR/RFR, NSE, R2, MAE,
out: hourly water level, /MLPR RMSE, PWE, ETP

tide /LGBMR

Chen et al. (2021) In: hourly, Meteorological data, Water level LSTM, BRR, MAE, RMSE,
out: hourly water level, GBDT, LR, ACC

additional reference SVR
factors

Zhang et al. (2023b) In: hourly, Discharge, Water level NS_TIDE + LOSS, RMSE,
out: hourly water level, (LSTM+FNN+Q, R2

LSTM+FNN,
LSTM, AR)

Zhang et al. (2023a) In: hourly, Tide level, Tidal level Cheb-GRU, RMSE, MAE
out: hourly meteorological data, Conv-LSTM,

time LSTM, GRU

Vu et al. (2023) In: daily, Piezometer, sea level, Discharge Stacked R, R2, RMSE
out: daily air temperature, LSTM

atmospheric pressure,
precipitation, soil moisture,
relative humidity,
evaporation rate
6
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hybrid model was used to forecast water levels of the Tanshui River
near its mouth, which is affected by tides. CART-RBF outperformed
the hybrid model CART-MLP and three reference models (CART, Back-
propagation Neural Network (BPNN), RBFNN). However, the authors
acknowledged the limitation of the proposed hybrid model, noting its
lack of generalization and concluding that the CART-ANN hybrid model
is usually case-dependent and limited to the training data domain.

Around the same time, Wei (2012) proposed a new algorithm
called Wavelet Kernel Support Vector Machine (WSVM) for forecasting
hourly water levels at gauging stations affected by tidal effects during
typhoons. The model was again applied to forecasting water levels
in the Tanshui River in Taiwan. The input data consists of average
precipitation, reservoir releases, and water levels from four gauging
stations for 37 typhoon events. Overall, the WSVM model achieved
better accuracy compared to the Gaussian Support Vector Machine
(SVM).

Yang et al. (2013) developed a hybrid CDW-NN model combining
continuous and discrete wavelet transforms (CWT and DWT) with
neural networks. The model was used for long-term forecasting of water
levels in the Yangtze River estuary. The CWT and DWT were used to
determine 15 and 28-day previous data sets as model input. A total of
12 different types of hybrid and pure forecast models were tested and
compared. The CWD-Neuro Fuzzy (CWD-NF) model provided the best
long-term predictions of water levels as the most efficient multi-step-
ahead (MSA) predictor with the lowest error accumulation. One of the
main advantages of using neuro-fuzzy systems is the ability to filter the
nosily signal in the model input, thus improving the predictive ability.

One of the first attempts to forecast discharges in a tidally influ-
enced river was made by Hidayat et al. (2014). The authors developed
an NN forecasting model using MLP that incorporates the LM optimiza-
tion algorithm due to its fastback progression property, incorporating
historical discharge data (Hidayat et al., 2014). The model was applied
to forecasting discharges in Samarinda on the Mahakam River. In
addition to historical discharge data, water levels (upstream stations,
nearby lakes) and predicted tidal levels (outer delta region) were used
as inputs. Similar to the study by Yang et al. (2013), wavelet analysis
was used to process the tidal data. Analysis of the significance of the
inputs showed that the lake’s water level had no positive effect on the
prediction horizon, indicating the dominance of tidal motion at the
observed station. The authors concluded that the proposed NN model
performs well for predicting discharges up to two days in advance.

Wei (2015) further investigated water stage forecasting during ty-
phoon events using various machine learning methods categorized as
lazy (LWR, KNN) and eager (LR, SVR, ANN), with an unsupervised data
splitting method. Inputs to the model were average precipitation, water
level (from upstream and downstream stations), reservoir releases, and
tidal effect with hourly resolution. The forecast horizon ranged from
1 h to 4 h. Among the eager learning models, ANN and SVR showed
better results than LR, and among the lazy learning models, LWR
performed better than KNN. However, the comparison of the eager and
lazy learning models suggests that no specific group was more effective
than the other. Overall, ANN proved to be the most accurate model due
to its ability to handle nonlinearities.

A study by Pasupa and Jungjareantrat (2016) compared the har-
monic analysis method used for water level forecasting in the Chao
Phraya River with various ML models (LR, kernel regression, SVR, KNN,
RF). The input data consisted of water levels observed in the last 24,
48, and 72 h, and forecasts were made for the next 24 h. All ML
models outperformed the existing method, with SVR using the RBF
kernel function providing the most accurate results.

Ahmed et al. (2017) constructed a hybrid SVR model with a sliding
window for forecasting tidal levels at various daily scales (1, 2, 5,
7 days) in the Karnaphuli River, Bangladesh. The authors used dif-
ferent types of kernel tricks (neural, radial, and analysis of variance
(ANOVA)). In the preprocessing phase, MA and EMA were used, and
7

the data were divided into three parts, creating data subsets consisting
of morning, daily, and night tide values. The problem of missing values
was solved by using average tide levels. In general, all hybrid ML
models achieved high accuracy (over 96%) using the most recent tidal
data.

Sung et al. (2017) developed an ANN model to forecast water levels
in the Anyangcheon River, a tributary of the Han River in South Korea.
The model considered the backwater effect from the main river on
tributary water levels. The model considered the backwater effect from
the main river on tributary water levels. Statistical analysis indicated
reasonable accuracy of the MLP model for forecasts up to two hours in
advance, with water levels and rainfall amounts used as input data.

3.3.3. Recent advancements (2018–2023)
Recent advancements in this field have been characterized by hy-

brid ML models and the introduction of RNN models. Jung et al. (2018)
explored a deep learning approach using the LSTM model for water
level forecasting in the Han River, South Korea. The model incorpo-
rated data on discharges from the dam, water levels, and predicted tide
levels. While the model performed well for short lead times (1 h), its
accuracy decreased with increasing forecast horizons (up to 24 h).

Building on LSTM, Yoo et al. (2020) proposed an LSTM model with
a hybrid activation function to improve flood level prediction in the
tidally influenced Hangang River, Korea. The model addressed under-
prediction issues and identified tide level, discharge, and precipitation
as significant factors through a t-test. The hybrid activation function
yielded more precise results than previous single activation functions
for up to 6 h of lead time.

Chen et al. (2020) presented a hybrid model combining the nonsta-
tionary NS_TIDE model (Matte et al., 2013) and AR analysis to improve
short-term water level forecasting in the Yangtze River estuary, China.
The model incorporated discharges and tides to achieve more accurate
predictions compared to the results obtained by the NS_TIDE model
alone.

Guo et al. (2021) investigated the use of data-driven ML approaches
for multistep-ahead (MSA) forecasting (up to 6 h) of water level at
stations in the tidal reach of the Lan-Yang River, Taiwan. Optimized
SVR, random forest (RFR), multilayer perceptron (MLPR), and light
gradient boosting machine (LGBMR) models were created using BO.
LGBMR emerged as the most accurate model, with observed water
levels, tides, and rainfall used as input data.

In addition to the forecasting methods discussed earlier, recent
research has explored applications of machine learning for storm surge
prediction. For instance, Chen et al. (2021) addressed the challenge
of storm surges in estuaries, highlighting the importance of fast and
accurate forecasts for disaster mitigation. Their study proposed a novel
approach using an LSTM model. The LSTM model incorporated various
data sources as input, including meteorological data, water level data,
and additional reference factors, to forecast water levels in the Yangtze
River estuary. While the model achieved the most accurate results for
one-hour lead times compared to traditional models (LR, BRR, SVR,
GBDT), its accuracy slightly decreased for longer forecasts (3, 7, and
15 h). However, the error remained within an acceptable range and
still outperformed the traditional methods.

Building on the previous work of Chen et al. (2020) and Zhang et al.
(2023b) explored a hybrid approach using multiple water levels and
a discharge time series as inputs for the NS_TIDE model in the Pearl
River Network’s tidal West River, China. They combined nonstationary
harmonic analysis with a deep learning NN to improve tidal forecasts.
Their correlation analysis revealed a direct relationship between errors
of the NS_TIDE model and discharge, suggesting that prediction errors
increase with sudden discharge changes. Evaluating different combi-
nations of models for short-term error prediction (up to 72 h), they
identified that a combination of FFNN on top of the LSTM layer that
uses discharge in addition to the previous time series exhibited the best
performance, particularly for extreme events, demonstrating significant

improvement over the AR approach proposed by Chen et al. (2020).
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Zhang et al. (2023a) investigated storm surge prediction using a
Chebyshev Graph Convolutional Network (Chebnet) for spatial infor-
mation extraction and a GRU for capturing temporal dynamics. Their
model aimed to forecast storm surges at five tidal stations in the
Pearl River Delta, China, with lead times of 1, 3, and 12 h. The
model used tidal levels and meteorological data as input. The proposed
model outperformed baseline models for past typhoon events, with the
advantage becoming more pronounced for longer forecasts.

Vu et al. (2023) investigated a stacked LSTM network for dis-
charge forecasting at five locations in the Loire River System, France.
The model incorporated various input parameters, including local and
global-scale data (sea level and climate parameters). Due to the diverse
data sources and timescales, frequency analysis was employed to opti-
mize lag times and correlations between variables. The model offered
accurate forecasts with a lead time of 180 steps (approximately 6 days)
for three long-term scenarios (1, 3, and 6 months). While exhibiting
good overall accuracy, the model performed better during drought than
flood periods.

3.4. Water level and discharge reconstruction studies

In contrast to forecasting, which predicts future hydrologic param-
eters based on past data, reconstruction studies aim to estimate water
levels or discharges at specific locations or for missing intervals within
the same time period. These studies typically focus on:

• Estimating hydrologic parameters at a remote or ungauged loca-
tion (e.g., Gan et al., 2021; Chinh et al., 2009; Sampurno et al.,
2022)

• Filling in missing or incomplete data in existing datasets (e.g.,
Thanh et al., 2022)

• Increasing the temporal resolution (upscaling) of existing data
(e.g., Bhar and Bakshi, 2020)

• Modeling historical data — hindcasting (e.g., Thanh Hoan et al.,
2022; Hidayat et al., 2014)

• Optimizing the operation of complex water systems (e.g., Wei and
Hsu, 2008; Gu et al., 2014)

While traditional hydrodynamic models are often used for these
asks, ML approaches offer a powerful alternative. As in the previous
ection, the papers with detailed information are summarized in Table 3
or water level and Table 4 for discharge studies.

.4.1. Pioneering work (2000–2011)
The first studies explored SNN for water level reconstruction in tidal

ivers and estuaries. A common approach utilizes ANNs, particularly
he MLP architecture. Adib (2008) applied an MLP to estimate water
evels in the Karun River, Iran, and Severn River, UK. The model used
iver discharge, tide elevation, and distance from the river mouth as in-
ut, demonstrating its effectiveness as an alternative to hydrodynamic
odels for various return periods.

Wei and Hsu (2008) developed an optimization model for flood
ontrol in a tidally influenced watershed. The model input consisted
f estuarine water levels, discharges from reservoirs, total lateral dis-
harges, control point levels, and tributary discharges observed at
ach hour. The model utilized an FFBP neural network for channel
outing, achieving good results in the Tanshui River basin, Taiwan,
sing observed data from typhoon events. FFBP with the linear channel
evel routing algorithm proved to be a good alternative to the physically
ased model.

Just one year later, Chinh et al. (2009) successively applied FFNN
o estimate water levels in channels located in a low-lying and flat
gricultural basin. Water levels in channels in the Chiyoda Basin,
apan, are affected by a complex interaction between rainfall and
ownstream water levels influenced by tides. Input variables were
elected by considering different hydrological factors, and water levels
ere estimated at two locations. It was concluded that the proposed
8

FNN model is useful for estimating water levels in the main channel.
3.4.2. Early applications (2012–2017)
In this period, researchers focused on comparing the performance

of ML approaches (primarily ANN) as an alternative to hydrodynamics
models, improving hydrodynamic modeling by ML, and shifted from
reconstructing water levels to reconstructing discharges.

Chen et al. (2012) compared the efficiency of 2D/3D hydrodynamic
models with an ANN for simulating water levels in the Danshui River
estuary, Taiwan. While both approaches provided satisfactory results,
the ANN outperformed the hydrodynamic models at some gauging sta-
tions, likely due to its ability to capture nonlinear relationships. Pierini
et al. (2013) compared the performance of an ANN (BPNN) with the
MOHID hydrodynamic model for predicting hourly tide levels in the
Bahia Blanca Estuary (Argentina). Using only tidal data as input, the
BPNN achieved higher accuracy than MOHID, suggesting potential
for further improvement by training ANNs with hydrodynamic model
outputs.

Furthermore, several studies explored the use of ANNs for improv-
ing hydrodynamic modeling, particularly during typhoon events. Liu
and Chung (2014) applied BPNN and Genetic Algorithm Neural Net-
work (GANN) models to improve the performance of a 1D hydrody-
namic model for simulating water levels in the Danshui River, Taiwan.
The 1D hydrodynamic model could not reproduce the water levels
at different stations along the river during typhoon events. Both ML
models outperformed the hydrodynamic model, with GANN exhibiting
higher accuracy during typhoon events.

Machine learning approaches have also been employed for dis-
charge reconstruction in tidally influenced rivers. Gu et al. (2014)
developed a framework for optimizing operations in a complex river
network using a combination of a River Network Mathematical Model
(RNMM), BPNN, and a GA. Each of the methods has a different pur-
pose. RNMM is used to train BPNN, which is then used to define
the fitness function for GA, and GA is used to optimize the operating
rules for sluice gates. The model was applied to the Pudong New Area
of Shangai. The results indicate that the proposed hybrid system is
characterized by excellent speed, robustness, and flexibility.

Hidayat et al. (2014) (mentioned previously in the forecasting
section) also developed a hindcast model for the tidally influenced
Mahakam River, Indonesia. Water levels and tide levels from the outer
delta were used as input data but with a small modification related to
the inclusion of tidal components obtained by wavelet transform (WT).
A hybrid Wavelet Multilayer Perceptron (WMLP) model performed well
for hindcasting discharges even without measured data, although minor
discrepancies for low and high flows were observed.

Garel and D’alimonte (2017) investigated the use of an MLP to
estimate freshwater discharge at the mouth of a narrow estuary (Guadi-
ana estuary, Spain) using data from Acoustic Doppler Current Profilers
(ADCPs). Using the principle of maximum entropy, the relationship
between mean and maximum velocity was evaluated using data from
three cross-channel surveys. The authors also considered using MLP
to estimate discharge when the ratio of mean and maximum velocity
was unknown. Their findings suggest that MLPs can effectively esti-
mate discharge when trained on data that includes all relevant river
dynamics.

3.4.3. Recent advancements (2018–2023)
In the recent period, researchers continued to investigate ML as an

alternative to hydrodynamic modeling and to harmonic analysis, they
also focused on improving the temporal resolution of data using ML,
and developing hybrid ML models. Bhar and Bakshi (2020) established
an FFBP using available tide level records from the upstream station
to estimate water levels at the downstream station, where data are
measured for only half a tidal cycle (12 h) in the Hooghly estuary,
India. The FFBP model was used to generate continuous water level
data at the remote station, using higher resolution data from the
neighboring station as input to the model. The analysis showed that

the FFBP model successfully simulated water levels at the downstream
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Table 3
Reviewed reconstruction studies of water level in more detail.

Author and year Time scale Input Output Method Goodness of fit
indices

Adib (2008) In: daily, Discharge, Water level MLP R2

out: daily tide elevation,
distance from
the river
mouth

Adib (2008) In: daily, Discharge, Water level MLP R2

out: daily tide elevation,
distance from
the river
mouth

Wei and Hsu (2008) In: hourly, Water level, Water level FFBP, RMSE
out: hourly reservoir discharge, CCCMMOC

total lateral
discharge,
control-point
levels, tributary
discharge

Chinh et al. (2009) In: minutes, Water level, Water level FFNN RMSE
out: minutes rainfall

Chen et al. (2012) In: hourly, Water level, Water level BPNN, RMSE,
out: hourly freshwater vertical 2D, R, E

discharge 3D hydrodynamic
models

Pierini et al. (2013) In: hourly, ANN: tidal Tide level BPNN, RMSE, R,
out: hourly data, Numerical: MOHID SKI

water level,
current, wind

Liu and Chung (2014) In: hourly, Freshwater discharge Water level BPNN, MAE,
out: hourly downstream GANN RMSE,

water level PE

Bhar and Bakshi (2020) In: half-hourly, Tide level Water level MLP RMSE, E,
out: single day R, MAPE

Guillou and Chapalain (2021) In: hourly, French tidal Water level MLR, MPR, MAE, R2,
out: hourly coefficient, maxima MLP RMSE

atmospheric pressure,
wind speed
river discharge

Gan et al. (2021) In: hourly, River discharge, Water level LGBM, MAE, RMSE,
out: hourly tide NS_TIDE CC, SS

Sampurno et al. (2022) In: hourly, Discharge, tide, Water level SLIM 2D + RMSE, NSE
out: hourly weather parameters MLR/SVM/RF

Thanh Hoan et al. (2022) In: daily, Water level Historical water Bagging + R2, RMSE,
out: daily level RF/SMO/M5P, MAE

REPT

Fei et al. (2023) In: hourly, Discharge, Water level H2C-XL, HLHC, NSE, KGE
daily, water level, HHLC, H2C
out: hourly tidal level,

precipitation,
evapotranspiration
station over neap or spring cycles. This demonstrates the ability of
FFBP models to reconstruct missing data with good accuracy, even with
limited datasets.

Guillou and Chapalain (2021) compared the performance of mul-
tiple regression and MLP models as an alternative to hydrodynamic
models for predicting high water levels at high tide in the Elorn estuary,
France. Four input variables were considered in terms of tidal effects
on water levels: the French tidal coefficients, atmospheric pressure,
wind speed, and river discharge. Several conclusions were drawn from
this study: (a) MLP performed slightly better than multiple regression,
(b) the MLP approaches improved the prediction of maximum water
levels compared to extrapolation from downstream data, (c) both ML
approaches slightly underestimated the highest water levels, and (d)
overall, the use of ML approaches can be recommended for the pre-
diction of high water levels and flooding using short-term weather
9

forecasts.
Gan et al. (2021) investigated the nonlinear and nonstationary
interaction of river discharge and tides in estuaries. The authors applied
the LGBM model to predict water levels along the lower reaches of the
Columbia River, USA. Discharges from two upstream rivers and tides
were used as inputs to the model. LGBM was compared to the NS_TIDE
model, and results showed comparability in monthly estimation accu-
racy between the two models, with a phase lag for flood events from the
upstream portion of the river. This study emphasizes the importance of
considering the interaction between river discharge and tides for water
level prediction.

The study by Sampurno et al. (2022) proposed an integrated ap-
proach combining a hydrodynamic model (SLIM) and machine learning
models (RF, MLR, SVM) to predict compound flooding scenarios in the
Kapuas River Delta, Indonesia. The 2D hydrodynamic model SLIM was
first used to simulate several compound flooding scenarios, which were

then used to train the ML models. The study highlights the effectiveness
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Table 4
Reviewed reconstruction studies of discharge in more detail.

Author and year Time scale Input Output Method Goodness of fit
indices

Gu et al. (2014) In: hourly Boundary condition, Discharge, RNMM + BPNN RMSE
out: hourly opening degree stage + GGA

and time,
average stage of
inner river,
stage of outer
river

Hidayat et al. (2014) In: hourly, Water levels, Discharge WMLP RMSE, R2,
out: hourly predicted tide levels, NSE

amplitude of tidal
components

Garel and D’alimonte (2017) In: daily, Velocity Freshwater discharge MLP –
out: daily

Thanh et al. (2022) In: daily, Water stages Discharge GPR, LSSVM, SVR, RMSE, R,
out: daily MARS, DT, RF NSE, MAE
of ML for data-scarce regions and identifies the hybrid RF model as
most suitable for this application.

Thanh Hoan et al. (2022) developed a hybrid method by combining
bagging ensembles with RF, Sequential Minimal Optimization (SMO),
and M5P models for estimating historical water levels in the Mekong
Delta, Vietnam. All tested models performed well, suggesting the suit-
ability of bagging ensembles for reconstructing historical water level
data.

Thanh et al. (2022) investigated the use of various machine learning
models (RF, Gaussian Process Regression (GPR), SVR, DT, Least Square
Support Vector Machine (LSSVM), and MARS) for reconstructing daily
discharge data in the Mekong River Delta. The input data were prepro-
cessed by Fourier series fitting and first-order differences. The study
found that ML models outperform traditional rating curves, with RF)
and MARS models being particularly well-suited for reconstructing
rising limbs of the hydrograph.

Fei et al. (2023) introduced a novel hybrid approach by combining a
physical model with ML for water level estimation in the Tianhe-Zhuyin
tidal reach of the Xijiang River Basin. Unlike previous studies (e.g. Chen
et al., 2020, Sampurno et al., 2022, and Zhang et al., 2023b), this study
employed the Hydrologic and Hydrodynamic Coupling Model (H2C).
The study used the outputs of the H2C model to further improve water
level estimates through a combination of XGBoost and LSTM models.
The proposed model H2C-XL achieved superior performance compared
to the reference models, particularly during flood events.

3.5. Stage-discharge relationship studies

Defining a relationship between water level and discharge can be
considered a special case of the reconstruction problem. The main
idea is to estimate the river discharge 𝑄(𝑥) from the observed water
level 𝐻(𝑥) at the same location. Due to a large number of physical
processes (varying river flow, backwater effects, channel cross-section
geometry, hysteresis, etc.), modeling the discharge-stage relationship
in tidally affected reaches is a highly complex process (Wolfs and
Willems, 2014). Outside of tidal influence and under (near) steady-state
conditions, a predetermined rating curve (RC) can successfully define
this relationship. However, under tidal conditions, the discharge is not
only a function of the water level at the same location but also depends
on the tidal dynamics (Habib and Meselhe, 2006).

While various ML approaches have investigated the stage-discharge
relationship (e.g., Bhattacharya and Solomatine, 2005; Ajmera and
Goyal, 2012), only three studies have specifically addressed the prob-
lem under tidal conditions. Detailed information about these studies
can be found in Table 5. In addition to these studies, we should also
mention the studies of Hidayat et al. (2014) and Thanh et al. (2022),
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which are related to the stage-discharge relationship but focus more on
reconstructing discharges under tidal conditions from multiple input
data (these studies were described in the previous section, but are
included in Table 5).

One of the first attempts to define the stage-discharge relationship
using ANN was reported by Supharatid (2003a). The author applied
an MLFF neural network that used discharge and tides as input and
measured water level as output of the model. The relationship was
defined by a two-dimensional RC (𝑄−𝐻 curve for different sea levels).
The resulting curves outperformed the standard RC obtained by LR and
MLR.

Habib and Meselhe (2006) investigated the construction of an RC
in low gradient tidal streams. Due to the multiple RC loops and the
complex geometry, the relationship between stage and discharge was
modeled using two computational approaches: ANN (namely MLFF)
and LOESS. Sensitivity analysis showed that the input variables and
measurements from the different stations at the main river and up-
stream stations were of equal importance. Although both approaches
were able to reproduce the nonlinear 𝑄 − 𝐻 relationship, the MLFF
demonstrated better generalization and accuracy for extreme discharge
values. This study highlighted the necessity of data outside the local
water level for accurate discharge prediction.

Wolfs and Willems (2014) compared two RC (Single Rating Curve
(SRC), State-Dependent Parameter-Rating Curve (SDP-RC)) with two
ML models (MLP ANN and M5 model trees) to determine a stage-
discharge relationship in rivers affected by hysteresis. The authors
used a hydrodynamic model that was calibrated and validated by field
measurements to generate training and validation data and avoid signal
noise from measurements. Both rivers experienced backwater effects
and unsteady processes. The inputs to the SDP-RC and ML models were
local water level and local water level gradient. The results showed that
the standard SRC approach produced inferior results compared to the
other approaches considered because SRC cannot describe hysteretic
behavior. However, the rating curve with SDP-RC was successful in
representing complex stage-discharge behavior. ANN outperformed the
SDP-RC model for the calibration data but provided less accurate pre-
dictions for the validation data, indicating problems with overfitting.
The M5 model provided slightly better predictions than the SDP-RC
model. The authors recommend SDP-RC due to its interpretability and
slight performance advantage over M5 but suggest exploring other ANN
models (RBF, ANFIS) for potential improvement.

4. Discussion

The results presented in the previous section provide insights into
addressing hydrologic challenges in tidal rivers and estuaries using
ML techniques, including forecasting, reconstructing, and establishing

stage-discharge relationships. After a careful systematization of the
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Table 5
Reviewed stage-discharge establishment studies in more detail.

Author and year Input Output Method Goodness of fit
indices

Supharatid (2003a) Tidal range, Water level MLFF EI, RMSE,
discharge MAD

Habib and Meselhe (2006) Water level Discharge MLFF, RMSE, E
LOESS

Wolfs and Willems (2014) Local water level, Discharge SRC, SDP-RC, MAPE, RMSPE, R2, R̄2

local water level gradient MLP, M5

Hidayat et al. (2014) Water levels, Discharge WMLP RMSE, R2,
predicted tide levels, NSE
amplitude of tidal
components

Thanh et al. (2022) Water stages Discharge GPR, LSSVM, SVR, RMSE, R,
MARS, DT, RF NSE, MAE
studies, we discuss the evolution of ML approaches and provide a
critical review by comparing different ML categories and discuss their
efficiency when dealing with hydrological processes in tidal rivers and
estuaries.

4.1. Evolution of ML approaches for tidal rivers and estuaries

As the results show, the progress and growing popularity of ML
approaches for tidal rivers and estuaries has been anything but linear
over the years. We address key questions about the presented results,
in particular, the frequency of published studies and the growth rate of
ML approaches in this area.

4.1.1. Slow gain in the popularity of ML in tidal rivers and estuaries
Although ML methods have been used in river hydrology since

1992, recent advancements have significantly increased its impact and
popularity (see Fig. 2). The slow growth in popularity of ML techniques
in tidal rivers and estuaries, especially between 1990 and 2000, can
be attributed to several factors, including the prevailing popularity
of simpler statistical methods, the limitations of early ML models,
limited computational power, the unavailability and low quality of
observational data, and the multidisciplinary nature of the problem,
which requires the collaboration of experts from different fields —
hydrology, coastal engineering, and computer science.

A search of the WoS database shows that hydrological studies
using simple statistical models are ten times more common than ML
approaches. In addition, ML generally requires more computational re-
sources compared to simple statistical methods that were popular in the
1990s and early 2000s (Silberstein, 2006). Data availability was also an
important factor during this period. In the 1990s, water level data from
gauging stations was often collected manually, and discharges were
estimated using RC based on individual field campaigns. Data collection
was time-consuming, costly, and inaccurate in highly dynamic river
environments.

Furthermore, a high temporal resolution of the data is crucial for
capturing the dynamics in coastal environments. A resolution of at
least hourly resolution is required for tidal rivers and estuaries. Pre-
vious literature reviews on river hydrology by Yaseen et al. (2015)
and Zhu et al. (2020) showed that more than 90% of the studies
were analyzed on a daily, weekly, monthly, or even annual scale. This
difference highlights that most studies analyzed in previous reviews
investigated conceptually different processes. It is clear that long-term
daily or monthly data are more available compared to hourly data,
which is reflected in a smaller number of studies for tidal rivers and
estuaries. Furthermore, large data sets are critical to the success of ML
approaches, but in the 1990s and early 2000s, large data sets were not
readily accessible.

In addition to data limitations, there was a certain degree of skep-
ticism in the scientific community about the interpretability and relia-
11

bility of ‘‘black-box’’ ML models. Established hydrological models and
simpler statistical methods were more favored approaches at the time.
All of these reasons, combined with the inherent complexity of tidal
river systems, further discouraged early ML research in this area.

4.1.2. Gaps in the frequency of published studies of ML in tidal rivers and
estuaries

Despite the widespread use of ML in hydrology today, research on
tidal rivers and estuaries is still limited, with clear gaps for longer peri-
ods in the past. Noticeable gaps exist in forecasting studies conducted
from 2003–2012 and in reconstruction studies prior to 2008, which
may seem odd but is consistent with several other reviews of ML studies
on water level forecasting.

For example, Zounemat-Kermani et al. (2020) reported only three
studies on ML models for surface water level prediction before 2008
and only five studies in the period 2000–2012. Wee et al. (2021)
reported the results of 39 studies on water level forecasting, of which
only three were published before 2008 and only nine between 2003
and 2012. Zhu et al. (2020) similarly covered 39 studies on ML models
for forecasting water levels in lakes and reported on only four studies
published before 2008. Note that rivers are generally more common
than tidal rivers and estuaries. Furthermore, studies published before
2012 in all three reviews (Zounemat-Kermani et al., 2020; Zhu et al.,
2020; Wee et al., 2021) have a monthly or daily time scale, which is
unsuitable for tidal rivers and the detection of sub-daily fluctuations.
This is inline with Thanh et al. (2022), who showed that most previous
studies focused on reconstructing monthly and annual average dis-
charge series. They further argue that studies that have reconstructed
daily-averaged discharge series are scarce, likely due to the availability
of data and the complex nonstationarity and nonlinearity of daily
averaged data. In this context, studies on hourly reconstruction are
likely to be even rarer.

These reviews suggest that the simpler ML approaches, data avail-
ability and computational power in the 2000s were not suitable to cope
with the complex processes in tidal rivers and estuaries, which may
explain the gaps in the published studies. The lack of reconstruction
studies before 2008 can also be explained by Gill et al. (2007), who
argues that a common practice at the time, when preprocessing data
for use in hydrological models, was to ignore observations with missing
values at a given time step, even if only one of the independent
variables was missing. It was only when more advanced ML models
became available that hydrologists began reconstructing missing data
rather than simply ignoring it.

4.1.3. Limited number of stage-discharges studies in tidal rivers and estuar-
ies

In addition to the research gap mentioned in the previous section,
there is also a very limited number of stage-discharge studies. We
found only five such studies in tidal rivers. This can be explained
by the fact that establishing relationships between water level and
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discharge in tidal environments is particularly challenging (Bourgault
and Matte, 2020). Conventional methods that are suitable for slow,
unidirectional flows (e.g. monthly averages in tidal rivers) become
unreliable for highly unsteady flows and reverse flows due to tidal
currents. The complexity is further increased by the asymmetry of the
tides, where the same water level can correspond to opposite discharge
values depending on the tidal phase.

In general, there are very few studies that have attempted to solve
the problem of determining instantaneous discharges of highly un-
steady tidal rivers with flow reversals based on water level alone. Em-
pirical and ML approaches have their limitations. The main drawback
of ML methods is that they have limited and questionable predictive
capabilities outside their training domain, as they lack the physical
fundamentals that drive river flows. In addition, ML methods offer only
minimal insight into river mechanics. These are important drawbacks
when it comes to understanding the future impacts of climate change
on rivers and coastal areas, especially in the context of sea level rise
or changes in the hydrological cycle. It is still a widely held opinion
that physically based models are preferable to data-driven methods,
especially when predictions are to be made outside the training domain,
as in climate change research (Bourgault and Matte, 2020). These
models take into account the underlying physical processes that drive
river flows and thus lead to more robust predictions. The application
of ML approaches for the estimation of stage-discharge relationships in
tidal rivers and estuaries is still a largely unexplored area of research.

4.1.4. Future opportunities for ML application to tidal rivers and estuaries
Fortunately, recent technological advances are enabling significant

growth in the development and application of ML for tidal river re-
search. The limitations that have slowed previous efforts are now being
addressed:

• Improved data acquisition: Automated data collection through
remote sensing and sensor networks, as well as publicly avail-
able large datasets, have greatly improved data accessibility and
resolution.

• Improved computing resources: Workstations and supercomput-
ers equipped with powerful graphical processing units (GPUs)
and tensor processing units (TPUs), as well as cloud-based plat-
forms (e.g. Google Colab, Microsoft Azure Machine Learning)
have significantly accelerated the training process for complex
deep learning models.

• Open-source software: Tools such as PyTorch, TensorFlow, and
Keras enable researchers to develop, test, and share ML models,
fostering collaboration and knowledge exchange.

These advances pave the way for more accurate management of
ater resources in tidal environments. By improving model predictions

or water level and discharge, ML can play a crucial role in mitigating
limate change risks such as sea level rise, extreme weather events, and
altwater intrusion.

.2. Advantages and limitations of ML approaches for tidal rivers and
stuaries

After examining previous limitations and research gaps, we conduct
critical review of applied ML approaches and identify their advan-

ages and limitations. Discussing challenges for each model category
equires a deep understanding of their architecture and constraints.
efore proceeding with modeling, evaluating criteria to select an ap-
ropriate ML model is crucial. Factors such as handling nonstationary,
onlinear, and time-varying dynamics of water level and discharge,
patial dependence, computational efficiency, and interoperability are
12

losely related to the model’s architecture.
4.2.1. Simple ML approaches
Simple ML approaches (statistical models, classifiers, kernel, and

ensemble models) are rarely used in reviewed studies. The first cate-
gory, representing simple statistical approaches, is identified in 7 out
of 35 reviewed studies, while the second category of classifiers, kernel
methods, and ensembles is identified in another 7 out of 35 reviewed
papers.

Simple statistical models vary in their ability to handle nonlinear
and nonstationary data, with some like MPR, BRR, LOESS, and MARS,
being more adept at capturing nonlinear or nonstationary relationships
compared to simpler linear models like AR and MLR. Simple AR models
assume linear relationships between data and, therefore, struggle with
nonlinear data. Similar to AR, MLR models assume linear relationships
between features and the target variable. For this reason, they are
not suitable for nonlinear data. MLR models also assume a constant
variance, which may not hold for nonstationary data. MPR models
extend MLR by adding polynomial terms to the features. They can
partially capture nonlinear relationships but suffer from overfitting if
too many high-degree terms are included. BRR models were developed
primarily for regularizing MLR to avoid overfitting, they can handle
some nonlinearity by implicitly creating smoother decision boundaries.
However, they are not designed specifically for nonlinearity. LOESS
models are non-parametric methods that fit a small linear regression
model to local subsets of the data. They can adapt to nonlinear patterns
but may not capture complex nonlinear relationships. Similar to LOESS,
LWR models fit a linear model locally but assigns weights to data points
based on their distance from a query point. They can capture local
nonlinearity but may not generalize well to unseen data. MARS models
build a piecewise linear model by recursively splitting the data space
and fitting linear models in each region. They are more flexible for
nonlinear and nonstationary data but can be complex to interpret and
prone to overfitting.

The second category of simple ML approaches can model nonlinear
processes but struggles with nonstationary data. In contrast to clas-
sifiers and ensemble models, kernel methods (KNN and SVR) cannot
directly handle missing data. Classifiers offer higher interpretability
than ensemble models and kernel methods due to their simple architec-
ture. Even though this category of ML models cannot directly capture
spatial variability, they can still incorporate temporal dependency using
lagged variables containing historical records.

However, even simple ML models like LR, kernel regression, SVR,
KNN, and RF can outperform harmonic analysis for tidal prediction (Pa-
supa and Jungjareantrat, 2016). Similar models such as RF, GPR, SVR,
DT, LSSVM, and MARS were found to outperform the RCs in estimating
stage-discharge relationship (Thanh et al., 2022). Harmonic analysis
and RC share the same sensitivity to outliers and noise, and may require
constant recalibrations. Although recalibration is typically not required
for ML models, retraining them periodically is recommended when
dealing with tidal data.

4.2.2. Shallow Neural Network (SNNs)
The prevalence of SNNs in predicting water levels and discharges in

tidal rivers and estuaries is evident in 17 out of 35 reviewed research
papers. Classic ANNs, such as FFNNs with the BP algorithm or MLPs
with a single hidden layer, were the common choices (Supharatid,
2003b; Habib and Meselhe, 2006; Wei and Hsu, 2008). Only a few
studies deviated from this simple architecture (Adib, 2008; Guillou and
Chapalain, 2021). SNNs introduce nonlinearity into the model archi-
tecture via activation functions like Rectified Linear Unit (ReLU), with
algorithms like LM which can improve training speed and efficiency
compared to BP. Reviewed studies have shown that compared to BP,
these ML algorithms offer faster convergence and are more resilient to
noise in the data. Similar to kernel methods and statistical methods,
ANNs require preprocessing for missing data. They also utilize lagged
inputs to capture temporal dependencies.
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Several studies have compared SNNs with hydrodynamic models
when simulating physical processes in tidal rivers and estuaries. SNNs
generally outperform hydrodynamics models in accuracy and ability
to preserve nonlinear characteristics between input and output vari-
ables (Chen et al., 2012; Pierini et al., 2013; Liu and Chung, 2014). The
adaptable nature of SNNs enables better generalization of complex tidal
river dynamics compared to hydrodynamic models, especially during
peak water levels and during typhoon events.

Nevertheless, there are some notable limitations of SNN models,
such as:

(a) the reliability and accuracy of models may be affected by the size
of the data set (e.g., Pierini et al., 2013; Hidayat et al., 2014)

(b) they are sensitive to spatial variability, model performance de-
creases if input datasets are physically located further away from
the location (e.g., Bhar and Bakshi, 2020),

(c) the full dynamics of the river and water level (entire range of
values) must be captured in a training set of data to provide
accurate estimates (e.g., Garel and D’alimonte, 2017), and

(d) as lead time increases in forecasting studies, results become
inconsistent, and under- and over-prediction become more com-
mon (e.g., Supharatid, 2003a; Hidayat et al., 2014; Yoo et al.,
2020).

4.2.3. Recurrent Neural Networks (RNNs)
The application of advanced RNNs, particularly LSTM networks,

has been gaining popularity in recent years (5 out of 35 studies in
a recent survey). The application of advanced RNNs in hydrological
modeling experienced a significant increase in 2023, which aligns
with a broader trend in hydrology emphasizing the importance of
capturing long-term dependencies. They possess several key features
that make them well-suited for tidal rivers and estuaries. LSTMs utilize
gating mechanisms to selectively remember or forget past information.
This allows them to learn and retain relevant long-term dependencies
within the data sequence. Unlike traditional ANNs, LSTMs have internal
memory cells that can store past information critical for predicting
future water levels. This memory capability is crucial for capturing the
influence of historical events on current river conditions. Additionally,
the Backpropagation Through Time (BPTT) algorithm efficiently trains
RNNs by backpropagating errors through the entire sequence, allowing
the model to learn from past errors and improve its predictions for
future time steps.

Advanced RNNs offer a significant advantage over simpler models
like ANNs and SVMs when dealing with long-term dependencies in
hydrological data. Traditional ANNs can suffer from vanishing gradi-
ents in long sequences. This makes it difficult for the model to learn
from distant historical data points, hindering its ability to capture
long-term trends. While SVMs are powerful tools, they often struggle
with nonstationary data, which is common in hydrology due to factors
like seasonal variations. Also, they can adapt better to these evolving
patterns in the data.

Advanced RNNs are particularly well-suited for modeling tidal river
water levels. These environments exhibit complex relationships be-
tween various factors, including tidal dynamics, river discharge, and
meteorological factors (rainfall and wind can also impact water levels
by altering river discharge and influencing storm surges). They can
effectively capture these nonstationary relationships by learning from
historical data. Their ability to model long-term dependencies makes
them a well-suited approach for predicting the dynamics of tidal river
water levels. While they offer significant advantages, a potential limita-
tion is their computational complexity. The training process, especially
for LSTMs, requires more computational resources compared to simpler
models. Additionally, their complex internal structures can make them
less interpretable compared to simpler models.
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4.2.4. Hybrid approaches
Hybrid approaches combining different techniques are the second

most common category in this review (occurring in 15 of 35 studies).
The first such application in tidal rivers dates back to 2003 (integra-
tion of RBFNN with fuzzy logic). Hybrid models have emerged as a
promising research direction in this field and often outperform pure
ML approaches (as shown by the studies of Yang et al., 2013; Ahmed
et al., 2017; Chen et al., 2020; Sampurno et al., 2022). The combination
of ANNs with hydrodynamic models, for example, utilizes the strengths
of both — the ability of ANNs to capture complex relationships and the
process knowledge of hydrodynamic models.

Several studies (Wei, 2012; Yang et al., 2013; Hidayat et al., 2014)
have successfully integrated different ML models (SSVM, LR, MLP)
with Wavelet Transform (WT). The strength of WT lies in its ability
to perform multi-scale analyses. Thus, hydrological time series data
can be decomposed into different frequency components to capture
variations on different temporal scales (e.g. daily, seasonal, tidal).
By incorporating WT features alongside observed data, hybrid models
can extend prediction horizons beyond the limitations of individual
models. This enables earlier warnings and better preparation for po-
tential flood events. Multi-scale analysis of WT helps to isolate noise
and nonstationary components in the data. This can lead to more
accurate modeling predictions by focusing on the information relevant
to water level forecasting. By capturing the rapid changes associated
with extreme events such as typhoons, WT-ML models can improve
forecast accuracy. However, these benefits come at the expense of
computational resources and the time required to determine the op-
timal WT parameters. Decomposing and analyzing data by WT can
be computationally intensive, especially for long time series or high-
resolution data. Finding the optimal WT parameters for a given data
set requires additional computational resources and expertise.

The combination of simple ML algorithms with nonstationary har-
monic analyses, such as the NS_TIDE model and the AR analysis (Guo
et al., 2021), increased the accuracy in short-term forecast of water lev-
els in estuaries. Although the inclusion of AR analysis was better than
NS_TIDE alone, the increasing error accumulation when the forecast
horizon is extended is a major problem. Combining the NS_TIDE model
with LSTM, FFNN and discharge time series can further improve the
accuracy (Zhang et al., 2023b). Another hybrid approach emphasized
the importance of incorporating discharge time series into water level
prediction and integrated hydrologic, hydrodynamic, XGBoost, and
LSTM models (Fei et al., 2023). The inclusion of XGBoost in the hybrid
model helps to capture complex relationships, process missing data, and
gain insights into the importance of features.

Other types of hybrid models also show potential in this area
of research. The combination of supervised and unsupervised learn-
ing techniques, e.g. the RBFNN model of Chang and Chen (2003),
can achieve faster training speeds, reliable hourly forecasts, and peak
flow capture compared to stand-alone ANNs. Hybrid models such as
CART-ANN and CART-RBF (Tsai et al., 2012) show improved predic-
tion capabilities for typhoon events. Ensemble models combined with
ANNs generally improve generalization with unseen data. However,
this generalization is limited if various ranges of data are not equally
represented. Studies by Ahmed et al. (2017) and Guo et al. (2021)
show successful applications of hybrid models that include SVR, en-
semble models, and optimization techniques for water level prediction.
However, these models may have problems with global optimization
for high-dimensional data. The bagging-based hybrid model provided
similar prediction results with high accuracy (Thanh Hoan et al., 2022).
Although hybrid models offer numerous advantages, they come with
some limitations. The computational effort and time required to find
the optimal parameters can be considerable (e.g. for WT-based ap-
proaches). In addition, combining ensemble models with ANNs can lead
to biases if the training data is not diverse enough to represent the
different data ranges.
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Hybrid approaches have also demonstrated the ability to capture
both spatial and temporal features. A combination of two RNN models
(LSTM and GRU) with Convolutional Neural Network (CNN) overcame
the previous limitations of the individual models. Although this type
of hybrid approach was already known in the field of hydrology, it
has only recently been applied to coastal rivers (Zhang et al., 2023a).
Increased model complexity can lead to longer training times but can
significantly improve the results.

5. Conclusion

The review focused on studies that investigated estuaries, tidal
rivers, and some of their tributaries with the aim of forecasting and
reconstructing water levels and discharges using various ML methods,
signal processing, statistical methods, and optimization algorithms. The
physical processes in tidal rivers and estuaries are influenced by nonlin-
ear interactions between river flows and tidal dynamics, which makes
estimating water levels and discharges challenging, especially under
extreme weather conditions. An evaluation of the different models is
important to better understand the advantages and limitations of each
model for a specific application. In contrast to previous reviews that
focused on inland water systems, the novelty of this review lies in
the shift of focus to coastal environments, namely tidal rivers and
estuaries, which are more complex, subject to different hydrological,
coastal and meteorological influences, characterized by a high degree of
nonlinearity and nonstationarity, and therefore require a much higher
temporal resolution. This, in turn, has implications for the selection and
performance of ML approaches.

In summary, most studies applied ML for forecasting water levels in
tidal rivers and estuaries, some studies investigated the reconstruction
of water levels using neighboring stations or other hydrological and
meteorological parameters, whereas only a few studies attempted to
estimate river discharges using other hydrological parameters. Only
five studies proposed solutions to a stage-discharge relationship in a
tidal river. Such a state of research suggests that estimating discharges
in tidal-affected regions is still a complex task that needs further
research.

Most studies used standard ANN, but recently more authors are de-
veloping hybrid approaches. The results suggest that data preprocessing
techniques can improve the overall performance of the models. It is
critical to carefully select and filter the valuable information that is
passed to the model ML. The most common hybrid choice for tidal
rivers and estuaries was a combination of ML, Wavelet transforms,
and nonstationary harmonic analysis. Various optimization algorithms
such as LM, GA, GGA, and BO are beneficial for avoiding overfitting
problems. The hybrid model approach was of outstanding importance
as it could solve simple problems that single ML models could not.

In recent years, new ML approaches have been developed and
applied to solve various problems in hydrology. However, there are
several approaches that have not been applied specifically to tidal rivers
and estuaries but have the potential to improve the prediction of water
levels and discharges: Emotional Neural Network (ENN) (Yaseen et al.,
2020), Counter-propagation Fuzzy Neural Network (CFNN) (Chang and
Chen, 2001), Wavelet-Bootstrap ANN (WBANN) (Tiwari and Chatter-
jee, 2011), CNN (Song, 2022), Fourier transform (FT) combined with
CNN (Khan et al., 2021), Physics Informed Neural Networks (PINN) (Lu
et al., 2021), and Large Language Models (LLMs) adapted to time
series (Jin et al., 2023). For this reason, some suggestions are given
for future research:

• In general, the data inputs for ANN and DNN methods are one-
dimensional (1D) time series. Therefore, it is challenging for
these methods to process 2D series or spatial data that may be
relevant to hydrologic processes. On the other hand, CNNs are
typically used for image classification and, therefore, can use
spatial features to improve predictive capabilities. The further
improvement of the approach combining CNNs and LSTMs (Baek
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et al., 2020) seems to be a promising direction for future research.
• FT is a signal processing method similar to WT. It differs from
WT because it transforms the signal into a frequency domain,
identifying the frequencies present and their components. In pre-
vious studies, the short-time Fourier transform (STFT) has been
used for network attack detection (Khan et al., 2021), electrocar-
diogram signal classification (Huang et al., 2019), and emotion
detection (Satt et al., 2017), feeding the Deep Neural Network
(DNN) with spectrograms as input data. Each of these applications
represented an improvement over the previously used methods.
Therefore, FT as a hybrid approach (such as FT-CNN, FT-LSTM,
FT-SVR, and FT-MLP) is a potential method for future research
on estimating water level and discharge of tidal rivers and estuar-
ies. Other hybrid ML subtypes not previously considered include
WT-LSTM, CNN-LSTM, and WT-ANFIS.

• The attention mechanism is a technique used to improve neural
network performance, is commonly used with sequential data,
and can effectively handle large datasets. It works on the principle
of adding different weights to the parts of the input sequence
based on their relevance for solving specific problems. They are
commonly applied as part of sequence models, Encoder-Decoder,
or Transformer architectures, and what differentiates them from
other mechanisms is their ability to provide interoperability to
some extent (Niu et al., 2021). Based on WOS, this mechanism
has only been recently applied (since 2023, 10 papers available)
in the field of hydrology. Hence, its utilization should be further
investigated for tidal rivers and estuaries.

• Unlike physics-based models, all ANNs discussed in this review
do not consider the principle of conservation of mass and mo-
mentum, which are critical for describing hydraulic processes
in tidal rivers and estuaries. ANNs ‘‘learn’’ the laws of physics
during their training phase based solely on observations, so ANNs
require large amounts of data because their performance depends
on it. Few of the studies were conducted in data-poor regions.
Therefore, it is of great interest to assess how different hybrid
methods would perform in the presence of limited data and to
suggest how this problem can be resolved.

• One solution for data-poor regions is PINN — a machine learn-
ing technique used to solve problems involving PDEs, such as
Shallow Water Equations (SWE) describing flow in tidal rivers
and estuaries. The PINN approach is a mesh-free technique that
approximates PDE solutions by converting the problem of directly
solving the governing equations into a loss function optimization
problem. In this way, PINNs take into account the physics of
the problem (described by PDEs) rather than trying to guess the
solution based solely on observational data (Jamali et al., 2021).
In addition to PINNs, one of the possible development directions
for data-scarce regions could be to combine ANNs with physics-
based models. This hybrid approach would involve calibrating a
hydraulic model with measured data and then using that model
to generate a much larger dataset containing a wide range of
(extreme) conditions that can be used to train ANNs.

• Finally, Large Language Models (LLMs) hold immense promise
for advancing time series forecasting in tidal rivers and estuar-
ies. Unlike specialized models that cater to specific tasks, LLMs
offer a more general, efficient, synergistic, and accessible ap-
proach. Their robust pattern recognition and reasoning abilities
over complex sequences of tokens have been well-documented
in natural language processing (NLP) and computer vision. How-
ever, adapting these powerful models to time series data has
been challenging due to data sparsity. In response, the Time-
LLM framework was recently introduced (Jin et al., 2023). It
reprograms LLMs for time series forecasting while keeping their
language models intact. By aligning time series data with text
prototypes and leveraging techniques like Prompt-as-Prefix, Time-
LLM outperforms specialized forecasting models. This innovative
fusion of language models and time series data holds the po-
tential to significant improvement of capabilities for predicting
hydrological parameters in tidal rivers and estuaries.
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Given the rapid progress and advancement of machine learning,
future studies should not only evaluate how different methods of ML
perform under specific conditions and constraints. It is necessary to pro-
pose holistic solutions for water management that include the optimal
number, location, and type of monitoring stations, and also combine
physically-based models with signal processing and ML algorithms.

6. Abbreviations:

ACC accuracy level
AC auto-correlation
ADCP Acoustic Doppler Current Profiler
AIC Akaike’s Information Criterion
ANFIS Adaptive Neuro Fuzzy Inference System
ANN Artificial Neural Network
ANOVA Analysis of Variance
AR Auto Regressive
ARIMA Auto Regressive Integrated Moving Average
ARMA Auto Regressive Moving Average
BO Bayesian optimization
BP Back-propagation
BPNN Back-propagation Neural Network
BPTT Back-propagation Through Time
BRR Bayesian Ridge Regression
CART Classification And Regression Tree
CC cross-correlation
CDW Continuous and Discrete Wavelet Transformation
CFNN Counter-propagation Fuzzy Neural Network
Chebnet Chebyshev Graph Convolutional Network
CNN Convolution Neural Network
CWT Continuous Wavelet Transform
DL Deep Learning
DNN Deep Neural Network
DT Decision Tree
DWT Discrete Wavelet Transform
EI efficiency index
EMA Exponential Moving Average
ENN Emotional Neural Network
ETP error of time-to-peak
FFBP Feed-Forward Back Propagation
FFNN Feed-Forward Neural Network
FT Fourier Transform
GA Genetic algorithm
GANN Genetic Algorithm Neural Network
GBDT Gradient Boosted Decision Tree
GGA Generalized Genetic Algorithm
GPR Gaussian Process Regression
GPU graphical processing unit
GRU Gated Recurrent Unit
H-ADCP Horizontal Acoustic Doppler Current Profiler
H2C Hydrologic and Hydrodynamic Coupling model
H2C-XL Hydrologic and Hydrodynamic Coupling model -

XGBoost and LSTM
HHLC Hydrologic-Hydrodynamic-LSTM Coupling model
HLHC Hydrologic-LSTM-Hydrodynamic Coupling model
KNN K-Nearest Neighbor
LGBM Light Gradient Boosting Machine
LGBMR Light Gradient Boosting Machine Regression
LLM Large Language Models
LM Levenberg–Marquardt
LOESS Locally Weighted Least Squares
LR Linear Regression
LS Least Square
LSSVM Least Squares Support Vector Machine
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F

LSTM Long short-term memory
LWR Locally Weighted Regression
MA Moving Average
MAD mean absolute deviation
MAE mean absolute error
MAPE mean absolute percentage error
MARS Multivariate Adaptive Regression Splines
MI Mutual information
ML Machine Learning
MLFF Multilayer Feed-Forward
MLP Multilayer Perceptron
MLPR Multilayer Perceptron Regression
MLR Multiple Linear Regression
MPR Multiple Polynomial Regression
MSA multi-step-ahead, multistep-ahead
MSE mean squared error
NF Neuro Fuzzy
NLP Natural Language Processing
NN Neural Network
NS_TIDE nonstationary Tidal Harmonic Analysis
NSE, E Nash–Sutcliffe efficiency coefficient
PAC Partial auto-correlation
PDE partial differential equations
PE peak error
PINN Physics Informed Neural Network
PWE peak water-level error
R, CC correlation coefficient
R2 coefficient of determination
R̄2 adjusted R2

RBF Radial Basis Function
RBFNN Radial Basis Function Neural Network
RC Rating Curve
ReLu Rectified Linear Unit
REPT Reduced Error Pruning Trees
RF Random Forest
RFR Random Forest Regression
RMSE root mean square error
RMSPE root mean square percentage error
RNN Recurrent Neural Network
RNMM River Network Mathematical Model
SAR Spatial Autoregressive Model
SDP-RC State Dependent Parameter-Rating Curve
SKI skill index
SMO Sequential Minimal Optimization
SNN Shallow Neural Network
SRC Single Rating Curve
SS skill score
STFT Short-time Fourier transform
SVM Support Vector Machine
SVR Support Vector Regression
SWE Shallow Water Equations
TPU tensor processing unit
WBANN Wavelet-Bootstrap ANN
WMLP Wavelet Multilayer Perceptron
WoS Web of Science
WSVM Wavelet Kernel Support Kernel Machine
WT Wavelet Transform
XGBoost eXtreme Gradient Boosting
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