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mparison of ML models for reconstruction of discharge in microtidal rivers.
based models accurately estimate river discharge using only water levels from multiple stations.
Attention model can predict river discharge under all flow conditions even for unbalanced inputs.

L we can reconstructs discharge for data-limited tidal rivers.
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I N F O A B S T R A C T
The challenges of managing water resources in tidal rivers, exacerbated by climate change and
anthropogenic impacts, require innovative approaches for accurate estimation of hydrological
parameters. In tidal rivers and estuaries, water levels depend primarily on river discharge and
tidal dynamics. Microtidal estuaries are particularly complex due to the strong stratification and
two-layer structure, which also affect the water level. This study investigates the potential of
machine learning (ML) models for estimating discharge in the Neretva River, Croatia, using only
water level data from multiple stations. Comparative analyzes were performed between simple
supervised models - Decision Tree (DT), Random Forest (RF), Support Vector Regression
(SVR), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGB) - and
time series models - Long Short-Term Memory (LSTM) and LSTM-Attention. Both simulated
and measured data sets were used for this purpose. The results show that time series models
perform satisfactorily in the assessment of discharge and overcome the challenges faced by
simple supervised models, especially under high flow scenarios. Overall, LSTM-Attention
proves to be the best model when analyzing all error metrics with superior performance over
the entire range of discharge values. It surpasses the overall LSTM model performance, with a
percentage increase of above 9% in RMSE and MAE, above 0.2% in NSE, and above 0.1% in R
for both simulated and measured datasets.

ction
s and estuaries are transitional zones where freshwater comes into contact with the marine environment
15). These environments are characterized by complex flows involving the exchange of energy and

en et al., 2023; Du et al., 2023). Tides, influenced by the gravitational forces of the sun and moon and
n, significantly affect water levels and flow dynamics in coastal regions (Chen et al., 2023).
lly, climate factors such as wind, temperature, air pressure, and precipitation play a crucial role,

extreme weather events like storm surges, typhoons, and hurricanes (Chen et al., 2022). Anthropogenic
luding modifications to floodplains, channels, urbanization, and agriculture, further impact tidal river
rcruysse and Grabowski, 2021; van Maren et al., 2023). Recent studies have also emphasized the
uence of wastewater on water quality and discharge volume (Dutta et al., 2021; Kundu et al., 2022;
and Giannika, 2024). Given these complexities, effective water management is essential for providing
ia.mihel@riteh.uniri.hr (A.M. Mihel); nino.krvavica@uniri.hr (N. Krvavica); jonatan.lerga@riteh.uniri.hr
000-0002-3697-9471 (A.M. Mihel); 0000-0001-5014-5476 (N. Krvavica); 0000-0002-4058-8449 (J. Lerga)
t al.: Preprint submitted to Elsevier Page 1 of 52
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ation on environmental and flood risks, enabling informed decision-making and adaptation measures in
d estuaries.
water management depends on hydrologic monitoring of both water level and river discharge. While
ter levels is relatively simple and cost-effective, discharge measurements are often limited. Continuous
river discharge is usually based on establishing relationships between water level and discharge or on
ments of water velocity using radar sensors or acoustic Doppler current profilers (ADCP). Unlike inland

discharge can be determined directly from known water levels, tidal rivers pose a particular challenge.
nments, water levels are influenced by the river flow, storm surges and tidal dynamics, as well as their
eractions (Hidayat et al., 2014; Wolfs and Willems, 2014). It is therefore difficult to establish reliable
etween water level and discharge in tidal rivers (Habib and Meselhe, 2006; Lee et al., 2021).
sors only measure surface water velocity and are therefore not suitable for tidal rivers due to the
locity profiles resulting from the complex flow patterns, including bidirectional and return flows. ADCPs
locity profiles, but their implementation can be technically complex and expensive, especially in regions
nancial resources or difficult field conditions, including harsh weather conditions (Habib and Meselhe,
al., 2021; Thanh et al., 2022). In addition, while the installation of ADCP stations provides velocity
liable discharges, it does not adress the need for long data sets. In cases where such devices have only
installed, or where data are missing, the only viable solution is discharge reconstruction. Reconstruction
can be done using numerical modeling or data-driven approaches, usually based on artificial intelligence
l., 2021; Thanh et al., 2022).
estimation has gained considerable attention over the past decade, driven by the increasing frequency of
s due to climate change. However, most studies in this field focus primarily on forecasting, as highlighted
ent review papers. These studies cover a broad range of topics, from general perspectives on artificial

I) (Yaseen et al., 2015) to optimization and hybrid modeling approaches (Ibrahim et al., 2022; Ng et al.,
ticular, they emphasize the effectiveness of Long Short-Term Memory (LSTM) networks, whether as
models (Ng et al., 2023; Khatun et al., 2023; Sabzipour et al., 2023; Mohanty et al., 2024), stand-alone

mproved accuracy (Li et al., 2023), or even for transfer learning applications (Khoshkalam et al., 2023).
current methods for estimating discharge from water levels in tidal rivers and estuaries using artificial
I) are limited by a lack of comprehensive studies. A recent review by Mihel et al. (2024) addressed this

g the use of machine learning (ML) in tidal environments for forecasting and reconstructing water levels
harges. The review identified research gaps, along with the strengths and limitations of ML models,
surprisingly low number of studies investigating these challenges. This review highlighted advanced
ral Networks (RNNs) and hybrid models as promising approaches for modeling complex, nonstationary,
t al.: Preprint submitted to Elsevier Page 2 of 52
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time series data, especially for capturing long-term dependencies. The study also proposed several future
tions, including hybrid models combining LSTM and attention mechanisms. Building on the findings of
nsive review of machine learning in tidal rivers and estuaries (Mihel et al., 2024), we present an overview
gnificant contributions in this field.
e first attempts to establish a relationship between water level and discharge in a tidal river was made
Meselhe (2006). The authors focused on the low-gradient Isaac-Verot Coulee tidal river in southwest
ing artificial neural networks (ANN) and Loess regression methods, the study included multiple water
ing stations, accounting for the backwater effect and lagged stages. The ANN model showed a better
ability compared to the Loess model, especially at higher discharge values.
al. (2014) conducted a study in which a multilayer perceptron (MLP) in combination with the Levenberg-

timization algorithm was used to hindcast and forecast the discharge of the Mahakam River in Indonesia.
ed challenges in extreme discharge conditions that affected the reliability of the model, which relied on
r level stations in the hindcasting scenario and a single upstream location in the forecasting scenario.
Wolfs and Willems (2014) investigated the relationship between water level and discharge in two Belgian
rke and the Dender. The study compared four approaches: single and state-dependent parameter rating
and SDP-RC), ANN and M5’ model trees. The SDP-RC was preferred despite the complexity of the
st represents the complex behavior of river hysteresis.
aper by Thanh et al. (2022) addressed the problem of discharge reconstruction in the Mekong megadelta
sing observations from two upstream stations and discharge data from one downstream station, six

evaluated: M5’ Decision Tree, Random Forest (RF), Support Vector Regression (SVR), Least Squares
or Regression (LSSVR), Gaussian Process Regression and Multivariate Adaptive Regression Spline
ltivariate Adaptive Regression Spline (MARS). RF and MARS showed superior performance, especially
ents, while the results of GPR, LSSVR and SVR were considered only adequate. The DT model was
atypical oscillations.

t study by Vu et al. (2023) explored the area of the Loire-Bretagne river system, incorporating 18 stations
targets. However, besides including the main river stations (five of them), they also considered tributary
tations that are not connected to the Loire river system, such as Bretagne sub-basin rivers stations, and
that belongs to the Charente River. A stacked LSTM was tested, which included both hydrological and
l data variables sampled daily.
e rapid progress of artificial intelligence and its growing popularity in hydrologic engineering (Zounemat-
l., 2020), the application of AI for discharge estimation in tidal rivers has not yet been sufficiently
Mihel et al., 2024). This study aims to fill this gap by evaluating the efficiency of different machine
t al.: Preprint submitted to Elsevier Page 3 of 52
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methods for discharge estimation in a microtidal Neretva River estuary (Croatia) using water level data
stations.
is the first to apply various ML models to estimate discharge from water levels in a microtidal river

ratification and two-layered saltwedge profile, which significantly affect discharge dynamics (Krvavica
ight ML models, from simple supervised algorithms to complex time-dependent models, were tested and
g both measured and simulated data, which is a novel approach in this field. Motivated by the limited use
river discharge estimation, as highlighted by a recent review (Mihel et al., 2024), this study introduces

nt ML models for the first time under microtidal conditions. Building on previous findings, we assess
s: an advanced recursive neural network (RNN) and a hybrid model. LSTM was chosen for its proven
iency, and robustness, while a novel hybrid model combining LSTM and the attention mechanism is
enhance predictive accuracy by identifying critical features. The models’ performance was tested under
onditions and seasons, characterized by both quasi-steady and oscillatory patterns.
ture of this paper is as follows: The first section contains a brief literature review and introduces
opic. The second section describes the research area, data collection, and simulation methods. The
ives an overview of the ML models and their underlying principles. The fourth section describes the
including the steps for data processing and model construction. Section five presents the results based
nd graphical analyses, followed by a discussion in section six. The final section contains conclusions

ns for future improvements.

d Study Site
n gives a brief overview of the Neretva River, focusing on the lower part of the river and highlighting

ological issues. It also describes the data collection process for the measured and simulated data sets.

River Estuary
va River, the largest river on the eastern Adriatic coast, flows through Bosnia and Herzegovina and
tudy focuses on its alluvial delta, which is classified as a saltwedge estuary (Krvavica and Ružić, 2020).
e has a significant impact on this region, as the river plays a crucial role for agriculture and irrigation,
mportant source of flooding (Gajić-Čapka et al., 2018). The Neretva River has a typical seasonal regime
by a low flow from May to September and a high flow from October to April (Krvavica et al., 2021).
nean climate in the region, which is favorable for fruit and vegetable cultivation, poses a threat to the
a results of more frequent saltwater intrusion, which affects plant growth, especially in the summer.
s reduced river inflows due to insufficient rainfall and the dynamics of the coastal aquifer exacerbate the
t al.: Preprint submitted to Elsevier Page 4 of 52
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inization (Zovko et al., 2018; Lovrinović et al., 2023). On the other hand, winter and early spring seasons
with flood events, that can be exacerbated by storm surges and high sea levels, resulting in increased

area covers the last 23 km of the Neretva River in Croatia, which is exposed to the influences of
lants upstream and tidal dynamics downstream due to its proximity to the sea (Figure 1). The influence
flow refers to several hydropower plants and man-made structures such as dams and reservoirs, whose
as significantly altered the natural hydrological regime of the river (Ljubenkov and Vranješ, 2012).
salinity intrusion is particularly evident due to sea level rise and reduced freshwater inflow (Krvavica
ovrinović et al., 2023).

Figure 1: The Neretva River Estuary location, with water level and discharge stations.

microtidal nature of the Adriatic Sea, tidal amplitudes are low, with storm surges regularly exceeding the
e ranges. The highest recorded sea level at the Neretva River mouth (in the period 1977-2018) was 120
the lowest -25 cm a.s.l. (Krvavica et al., 2021). The mean astronomical tidal amplitudes in the Adriatic
do not exceed 30 cm (Medvedev et al., 2020). The Neretva River estuary, which is characterized by strong
hroughout the year, has a pycnocline thickness of less than 50 cm (Krvavica et al., 2021). Such strong
s a result of the extremely low tidal dynamics of the Adriatic Sea.

ed Data
rements of hydrological parameters were carried out by the Croatian Meteorological and Hydrological
roatian Waters. These include sea levels at the tidal station Ušće, as well as water levels at hydrological
t al.: Preprint submitted to Elsevier Page 5 of 52
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en (11 rkm), Norin (16 rkm) and Metković (20 rkm), River discharge at Metković is measured with
oustic Doppler Current Profiler (H-ADCP) devices. Figure 1 shows the water level stations and a single

ion (ADCP). The data set spans six years (2016-2021) with hourly intervals.
monitoring in the Neretva River estuary has only recently been implemented (since the end of 2015). The
continuously measured with three H-ADCP devices installed under the bridge in Metković (Krvavica
he H-ADCP devices estimate the discharge by integrating the velocity profile over three cross-sectional
ridge opening. The total discharge is calculated by adding the values measured by the individual devices.
016-2021) covers a wide range of hydrological conditions, from negative discharges (tidal currents and

) in summer to peak winter discharges of 1890 m3/s, with an average annual discharge of 323 m3/s. The
ter levels in Metković reached 2.25 m a.s.l during the observed period. High water levels are the result
ors: high sea level and high river flow, the operation of hydropower plants upstream and the interaction
ce and subsurface flow and runoff during extreme rainfall.
nship between discharge and water level at the Metković station is shown in Figure 2. A relatively strong

tween the two hydrological parameters is observed, but with a noticeable dispersion of points around the
re, the discharge rating curve is not suitable here. Consequently, our hypothesis is that the use of simple
ML models can provide valuable insights into the dynamics of the river and reveal the relationship

arge and water level at different stations.

igure 2: Stage-discharge relationship for the Neretva River in Metković based on hourly data.
t al.: Preprint submitted to Elsevier Page 6 of 52
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additional measurements are regularly taken at the Metković station to ensure proper calibration of the
ices, several issues affect the quality of the discharge time series data. Problems such as missing data,
scillations, and the complexity of low water flow affect the quality of the discharge time series data.
in synchronization can also arise due to data collection and processing by different institutions.

he first problem, we filled the gaps in the time series by establishing a non-linear correlation between
DCP devices. Other two problems can be minimized by careful noise filtering. In this study, however,
erform numerical simulations and evaluate the selected ML methods on both measured and simulated
ale behind this choice is that we need a controlled data set that accurately represents the main hydraulic
out being masked by gaps, errors, noise and potential time shifts that occur in heterogeneous data sets.
ensures a more reliable and robust evaluation of the ML techniques under investigation.

ted Data
ated water levels at the stations are generated using the STRatified EstuArine Model (STREAM), a
nal, time-dependent numerical model developed specifically for microtidal estuaries (Krvavica et al.,

M has already shown good performance in modeling the two-layer flow dynamics in the Rječina and
(Krvavica et al., 2017, 2021; Krvavica and Ružić, 2020). This approach, which is characterized by the

l efficiency of 1D shallow water models, proves to be more appropriate than its 3D counterparts. It is
the same time effectively captures the dominant hydraulic processes that occur in the two-layer flow in
aries.

l domain is defined by the channel geometry generated from the cross-sections of the Neretva estuary,
m the river mouth to 35 km upstream, exceeding the tidal limit. At the downstream boundary, a time
otal water level is set based on the measured sea levels at the Ušće station, while the interface between
lower layers is defined based on a critical two-layer flow condition. A time series of river discharge is set

boundary. It is important to note that the discharge time series is subjected to a two-stage processing.
es are shifted by one hour to account for the distance of 15 km between the Metković station and the
dary. Then, a median filter with a 3-hour window is applied to eliminate high-frequency noise and single

n coefficients are calibrated by minimizing the error between the simulated and measured data sets.
single-layer shallow water equations, the calibration process involves not only the determination of the
n coefficient between the fluid and the riverbed, but also the determination of the interfacial friction

tween two fluids of different densities. First, the river bed friction is calibrated using only high flow
edominantly single-layer case). Next, the interfacial friction is calibrated for the entire data set, which
t al.: Preprint submitted to Elsevier Page 7 of 52
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the conductivity measurements at the Metković station. More details about the calibration, setup and
he model can be found in the earlier study by Krvavica et al. (2021). After calibration, the simulated data
d agreement with the measured water levels at the Opuzen, Kula Norinska, and Metković stations.

itudinal profile of the River Neretva water levels for river discharges: a) 1003 m3/s, b) 570 m3/s, c) 335
3/s

llustrates the salinity profiles for different river discharges. The simulations show the typical behavior
ge at high to low discharges and justify the use of the numerical model and its ability to represent
ynamics of the estuary. At high flows, the saltwedge is completely flushed out of the estuary and the
has a relatively steep gradient along the entire river channel. At high to medium flows, the saltwedge
the river mouth and the water surface has a slightly lower gradient along the entire river channel. At
flows, the saltwedge begins to intrude upstream, and the water surface has a very low gradient for the

eters. Finally, at low flows, the saltwedge intrudes upstream beyond the Metković station, resulting in a
ter surface along the entire length of the saltwedge.

river discharge from water levels in tidal rivers and estuaries it particularly challenging due to the
cation between sea level and river flow, along with their non-linear interactions. Sea levels are influenced
ion of tides and storm surges, and these factors interact with river flow to produce variable water levels
ion (Matte et al., 2014). In microtidal estuaries, where tidal ranges are small, the complexity increases

e of the strong stratification and the presence of a two-layer flow structure. In these conditions, the water

t al.: Preprint submitted to Elsevier Page 8 of 52
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sts of an upper freshwater layer and a lower salt-wedge layer (Krvavica et al., 2021). Along the reach
-layer structure is present, the total water level tends to remain nearly constant, regardless of changes in

e (see Figure 3). This is because variations in river flow primarily affect the depth of the lower saltwater
than the overall water level. Consequently, during periods of low river flow, a wide range of discharges
hout significant changes in surface water level. This phenomenon makes it particularly challenging to
arge from water levels alone in microtidal estuaries, as traditional methods based on a single water level
re the underlying changes in flow conditions.
ated and measured data sets cover a continuous period of six years (2016-2021) at hourly intervals.
data set distinguishes between discharge values for the lower saltwater and upper freshwater layers.
total discharge at the Metković station is a result of the summation of these two values. We should

approach presented in this study could be used to estimate only freshwater discharge, which is more
mation for water management; however, to be consistent with the measured data, we chose to use the
. Figure 4 shows the time series of water level and discharge at four locations in 2016.

(a) Simulated (b) Measured
4: Water levels and discharge data for a period of one year (2016): a) simulated and b) measured
t al.: Preprint submitted to Elsevier Page 9 of 52
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erview of ML Models
ent study, eight different ML models were implemented, namely:

n tree (DT),

forest (RF),

t vector regression (SVR) with radial basis and sigmoid function,

radient boosting machine (LGBM),

e gradient boosting (XGB),

ort-term memory (LSTM),

Attention.

ovides a brief theoretical background of each ML model.

n Tree (DT)
ion tree (DT), a non-parametric method, belongs to the supervised learning approach (Hannan and
), which can be applied to regression and classification problems (Sattari et al., 2020) depending on the

dent variable. The DT method can be described as an easy-to-interpret method that provides satisfactory
nh et al., 2022), relatively fast execution time and good short-term prediction performance (Malek et al.,
herefore frequently used in studies.
er, an optimized classification and regression tree (CART) model is used for the problem of regression,
ependent value is predicted based on multiple independent variables. The regression approach differs

ation in that it does not generate the classes of dependent variables but the response value for each
ion with respect to the dependent variable, where the splitting of the trees is based on the squared

ization principle (Choubin et al., 2018). However, this approach may encounter some problems, such
(which can be solved with the pruning technique whose purpose is to reduce the tree size) and linear
s.

Forest (RF)
orest (RF) is an extension of the previously mentioned DT approach and, like DT, can be used for both
classification problems. However, unlike DT, it falls into the category of ensemble methods, as in this
it consists of multiple regression decision trees whose prediction results are combined and averaged to

al estimates (Huang et al., 2023).

t al.: Preprint submitted to Elsevier Page 10 of 52
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ed RF implementation includes a bagging method (bootstrap aggregation) that solves the problem of
ile providing higher stability and variance reduction (Malek et al., 2022). In addition to the bagging

lso utilizes feature randomness and binary recursive partitioning to create each decision tree in a forest.
created trees their independence, ability to deal with missing values, and other advantages. One of

with RF is that the training data set does not contain the values that the model predicts on the unseen
lou et al., 2023). Three parameters must be defined for the construction of RF models (Li et al., 2016).
ters are the number of regression DTs, the randomly selected independent variables at the nodes and the
ervations required at the end node of each tree.

t Vector Regression (SVR)
ector Regression (SVR) is an adapted variant of the original Support Vector Machines (SVM), which are
nd were proposed by Vapnik (Vapnik, 2000), with the primary goal of solving classification problems

, 2023). The SVR approach aims to find the optimal hyperplane for the data based on the predefined error
at can be considered acceptable by such a model. In this work, a 𝜖-SVR was chosen as it considers the

insensitivity.As already mentioned, this method is kernel-based, which means that the data is transformed
imension to perform the separation (Guillou et al., 2023). Here, two different SVR kernel functions are
d for nonlinear category problems: the radial basis function and the sigmoid function.

radient Boosting Machine (LGBM)
dient Boosting Machine (LGBM), published in 2017 (Ke et al., 2017), is based on a DT algorithm that

tree growth to increase the training speed (Gan et al., 2021) (Gan et al., 2021) and enables parallel
eads to efficient tree growth (Tian et al., 2022). The above model can solve various problems such as
classification (e.g. binary, multiclass, and lambda) (Tran et al., 2021). The tree is built depending on the

provide the largest error reduction, which characterizes it as more greedy than the standard approach in
ing methods of growing trees in stages. In addition to leaf-wise tree growth, LGBM is also known for its
t-based one-sided sampling (GOSS), histogram-based algorithm, and exclusive feature bundling (EFB).
methods, the LGBM can reduce the probability of overfitting and boost computational efficiency.

e Gradient Boosting (XGB)
radient Boosting (XGB) is another ensemble ML model that is based on DTs and simultaneously

echniques such as tree pruning and regularisation with the aim of overfitting prevention (Piraei et al.,
recisely, it is a further development of the model that was already developed in 2001 by Friedman. In
LGBM, XGB is based on a level-wise tree growth process in which the DTs are consistently constructed
t al.: Preprint submitted to Elsevier Page 11 of 52
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ch level in order to reduce the estimation error of the previous stage. This is quite efficient when a small
ilable and leads to more stable results than it would be possible with the LGBM model (Gan et al.,
nables CPU multithreading parallelization, provides efficient and fast processing of large data sets, and
ck technology (Piraei et al., 2023).

hort-Term Memory (LSTM)
previously encountered recurrent neural network (RNN) restriction regarding the vanishing gradient,

ent approach, named the Long Short-Term Memory (LSTM), was introduced by Hochreiter and
(1997). LSTM represents an improved version of the RNN that was able to overcome the previous
d proved to be even more efficient for sequential data processing, leading to impressive results in various
nsky, 2020).
M cell consists of three gates, namely input (𝑖𝑡), forget (𝑓𝑡) and output (𝑜𝑡), and it also contains the
ate (𝑐𝑡) representing its memory, the candidate state (𝑐𝑡), a hidden state (ℎ𝑡) and two activation functions:
nd the hyperbolic tangent. The above gating mechanisms in the LSTM allow the network to selectively
formation flow as they act as switches that can be turned on or off based on the input data (Yoo et al.,
ng the typically used activation functions (Lindemann et al., 2021). All expressions for the gates and the
n in Eq. 1 - 6.

𝑊𝑓 ⋅
[
ℎ𝑡−1, 𝑥𝑡

]
+ 𝑏𝑓

)
(1)

𝑊𝑖 ⋅
[
ℎ𝑡−1, 𝑥𝑡

]
+ 𝑏𝑖

)
(2)

h
(
𝑊𝑛 ⋅

[
ℎ𝑡−1, 𝑥𝑡

]
+ 𝑏𝑛

)
(3)

⋅ 𝑐𝑡−1 + 𝑖𝑡 ⋅ 𝑐𝑡 (4)
𝑊𝑜 ⋅

[
ℎ𝑡−1, 𝑥𝑡

]
+ 𝑏𝑜

)
(5)

⋅ tanh(𝑐𝑡) (6)

𝑖, 𝑊𝑜 and 𝑊𝑛 are the weights, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑜 and 𝑏𝑛 are the biases of the forget, input, output gate and candidate
d tanh are the activation functions.

Attention
LSTM-Attention model was also used in the study as an improved time series technique. This model
advantages of the LSTM architecture, which include capturing long-term dependencies and patterns,
t al.: Preprint submitted to Elsevier Page 12 of 52
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ntages of the attention mechanism, which allows the model to focus on the most important parts of
ence. The purpose of the LSTM in the model is to recognize the correlation between the time steps of
res and select those that can be considered relevant and from which an accurate estimate can be obtained.
ion mechanism works on the principle of determining the importance of each used feature in the data
ight, for each time step in order to provide an appropriate estimate of the output feature at the specified
s type of attention mechanism has some similar properties to the global attention mechanism, where the
quence is processed, just like the LSTM, to generate weights for each element in the sequence, since

uence is of importance, even though it requires more computational resources, unlike local attention
2015). However, our mechanism is based on the hidden states that are generated by the LSTM and for
ntion weights are generated; therefore, this mechanism can be categorized as content-based attention.
n functions are used in the attention mechanism: the hyperbolic tangent (tanh), which adds non-linear
. it is useful in modeling complex relationships as in the problem at hand, and the softmax activation
h generates a probability distribution of values to be able to provide emphasis on the relevant information
uence. Finally, the obtained weighted sum of hidden states is passed to a single feed-forward layer to
nal discharge estimates.

ology

rocessing
essing consisted of lag correction, splitting and normalisation. A cross-correlation has been performed
nput and output variables to account for the lag between the water levels at different stations and river
wo-hour time delay was found between all water level stations and upstream discharge, thus the time
ifted accordingly. Cross-correlation results are shown in Figures A.1 and A.2 of Appendix A.
et is divided into a training data set (80% of observations, from January 2016 to October 2020) and a
0% of observations, from November 2020 until December 2021). The training data set is used for the

ess, while the test data set is used to evaluate the performance of the models on unseen data. Before
odel, the input (water levels) and output (discharge) data were scaled to a range between 0 and 1 using
r from scikit-learn (an ML library for Python). This normalization process counteracts the differences in
nges and preserves the primary data distribution. This approach is based on the following mathematical

𝑖 − 𝑥𝑚𝑖𝑛
𝑎𝑥 − 𝑥𝑚𝑖𝑛

(7)
t al.: Preprint submitted to Elsevier Page 13 of 52
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s three pieces of information, the current observation 𝑥𝑖, the overall minimal 𝑥𝑚𝑖𝑛 and maximal 𝑥𝑚𝑎𝑥
iable.
dels that do not depend on the order of the data and the interaction between the variables, especially
s models (DT, RF, SVR, LGBM, and XGB), where shuffling the data does not improve performance,
dels require an appropriate ordering of the data in time. We selected two time series models, LSTM and

ion, which capture the temporal dependencies through the sequential data. However, for the models to
dependencies effectively, they require a certain structure of the input data. Therefore, a sliding 24-hour
e water level data is used as input for predicting the discharge of the last hour as it covers one full cycle
w tide, thereby, the daily river flow dynamic is successfully captured in 24 hours of historical records.
the fact that the Adriatic Sea has a mixed tidal signal, with equally strong diurnal and semi-diurnal
ence, the 24-hour window is sufficient for capturing both types of oscillation.

Training and Optimization of Hyperparameters
ere trained on 80% of each data set using five-fold cross-validation with grid search to optimize
ers. The chosen number of equally separated k-folds was five due to the tradeoff between bias and
he moderate size of the available data set. This approach minimizes overfitting as each hyperparameter
s evaluated in a separate fold during training.
e principle of k-fold cross-validation is shown in Figure 5. The first step of this method is to determine
f folds with which the models are first trained and then tested. For this particular problem, we used a
where the first four folds are used to train and the last fold is used to test the performance of the model.

sult is obtained by taking the average of all the divisions created.
obstacle to using k-fold cross-validation and the search network approach is that they are not available
odels. Nevertheless, the library skorch facilitates the use of wrappers for Pytorch models, such as
ressor. This library acts as an intermediary between Pytorch models and the scikit library. It enables the
training, optimization and evaluation functions instead of developing new functions for these purposes.

ric for refitting the models was MSE, continued by other scoring metrics such as RMSE, MAE, NSE,

step was to select a suitable optimization algorithm. The Adam optimization algorithm is often used
n with LSTM due to its many advantages (Ahmed et al., 2022). For the current problem, however, a

variant is used, namely Nesterov-accelerated adaptive moment estimation (Nadam). Nadam is a hybrid
lgorithm that uses both the Adam optimizer and the Nesterov momentum to achieve faster convergence
al., 2023). In addition to the chosen optimization algorithm, a regularization technique for early stopping
t al.: Preprint submitted to Elsevier Page 14 of 52
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Figure 5: Principle of k-fold cross-validation

ch primarily aims to prevent overfitting of the model. The selected number of epochs before the model
, i.e., the validation loss or MSE stagnation, was equal to 15. This is considered essential in cross-
meida, 2002) as it prevents critical errors, i.e. inaccurate estimates. We have chosen 500 as the number

mance Metrics

squared error (MSE) serves as a guide for the selection of the optimal hyperparameters and the final
tion, accompanied by the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), the

error (MAE) and the correlation coefficient (R), which are calculated as follows:

=
∑𝑛

𝑖=1(𝑄
𝑜𝑏𝑠
𝑖 −𝑄𝑝𝑟𝑒𝑑

𝑖 )2

𝑛
(8)
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∑𝑛

𝑖=1(𝑄
𝑜𝑏𝑠
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𝑖 )2
∑𝑛

𝑖=1(𝑄
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√∑𝑛
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𝑜𝑏𝑠
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𝑖 −𝑄𝑝𝑟𝑒𝑑

𝑖
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𝑜𝑏𝑠
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(12)
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is on low MSE, RMSE and MAE values. The goal is to achieve high NSE and R values that approach unity
st evaluation of model performance. The selected evaluation metrics MSE, NSE, RMSE, MAE and R are
fy model performance. While RMSE and MAE provide insights into the prediction errors in discharge
ilitates the comparison with the mean observed values. The correlation coefficient R measures the linear
etween predicted and observed values. The selection of these metrics complies with the standards for
odeling and ensures a comprehensive assessment of the effectiveness of the models (Gupta et al., 2009).

sis of statistical significance

uating the performance metrics of each ML model, we compared their residuals to determine which
med statistically better than others. To achieve this, we applied the Wilcoxon signed-rank test, following
oach to that used in the study by Corazza et al. (2013). The null hypothesis of the Wilcoxon test asserts
o difference between the models’ predictions, i.e., their absolute residuals. The analysis focuses on the
key statistical measure. Based on the commonly accepted p-value threshold of 0.05, there are two possible
that rejects the null hypothesis if the p-value is less or equal to 0.05, indicating statistically significant

e other possibility where there is no sufficient evidence to reject the null hypothesis where p-value is
.05. In simpler terms, when p is less than 0.05 we conclude that the compared models differ in their
ability.

interpretability and feature importance

rtance of providing transparency in AI models has grown, along with their increasing application in
nsequently, in recent years, the use of Explainable AI (XAI) methods has significantly risen. A study

l. (2024) emphasized the general application of such methods and categorized them into three groups:
of critical features, estimation of feature contributions, and evaluation of the adaptability of a model to
eatures. Although XAI provides the necessary tools for clarifying complex processes, a careful analysis
ased on domain-specific knowledge must be explored to avoid incorrect conclusions.
dy, we focus on estimating feature contributions. First, we conducted two initial analyses to establish the
etween the input and output variables. For this purpose, we applied correlation and mutual information
iersol, 2011; Thomas and Joy, 2006). Additionally, after obtaining the predictions from different ML

ature contributions were estimated using the SHapley Additive exPlanations (SHAP) method for simpler
undberg and Lee, 2017) and Feature Occlusion Test for time-series models.

igns each feature an importance value based on its contribution to the model’s predictions, by breaking
icted output into the sum of feature contributions. This method is grounded in concepts from cooperative
CGT) (Xu et al., 2024). SHAP supports both global and local interpretations, facilitating a deeper insight
t al.: Preprint submitted to Elsevier Page 16 of 52



Journal Pre-proof

into individua379

missingness,380

explanations t381

SHAP is382

and LSTM-ba383

for SVR mod384

limited interp385

if given a lim386

observations,387

by averaging t388

not compatibl389

features. The390

predictions (N391

An alterna392

simple techniq393

occluding, or394

5. Results395

The perfor396

all models gen397

set, as the latt398

the optimizati399

Two time-400

evaluation me401

the LSTM are402

with radial ba403

to worst based404

SVR-sigmoid405

top and the SV406

LSTM an407

important to c408

LSTM-Attent409

A. M. Mihel e
Jo
ur

na
l P

re
-p

ro
of

ML Approaches for Estimating Discharge in Microtidal Rivers

l predictions and the model’s overall behavior. SHAP values follow three key properties: local accuracy,
and consistency, enabling them to provide not only the required transparency of the model but also
hat are consistent and accurate. (Lundberg and Lee, 2017)
easily applicable to simple ML models, but it application is limited for SVR (RBF and sigmoid)
sed models. Although SHAP provides KernelExplainer as a model-agnostic solution, it is restricted
els and inadequate for LSTM-based models. KernelExplainer has high computational requirements,
retability for large datasets, does not encompass kernel-specific transformations, and may be biased
ited range of background data. Likewise, KernelExplainer allows only 2D input format (number of
features), while LSTM requires 3D (number of observations, timesteps, features). Ignoring the time-steps
hem hinders the SHAP capacity to handle time-dependent patterns. The current SHAP implementation is
e with RNN-based model layers for PyTorch. Another restriction of SHAP is related to highly correlated
presence of such features limits the SHAP’s ability to find features with the greatest impact on model
ayebi et al., 2023). Hence, determining whether the importance is overstated or understated is impossible.
tive to SHAP for time-series models is a feature occlusion test. The feature occlusion test is a relatively
ue used to assess the importance of individual features in a machine learning model by systematically

removing individual features, and then observing how the model’s performance changes.

mance of the eight ML models on the training and test data sets are summarized in Table 1. As expected,
erally performed better in estimating discharge from the simulated data set than from the measured data

er is subject to noise and inconsistencies even after preprocessing. The hyperparameters selected during
on process are shown in Table B.1 of Appendix B.
dependent models, LSTM and the hybrid LSTM-Attention, consistently achieved better results for all
trics, which are highlighted in bold in Table 1. The improvements of the LSTM-Attention model over
moderate but consistent across different metrics. On the other hand, the SVR models, especially those

sis function and sigmoid kernels, showed suboptimal performance. The ranking of the models from best
on the performance of the simulated data set is as follows: LSTM-Attention, LSTM, XGB, RF, DT,

, LGBM and SVR-rbf. A similar ranking applies to the measured data set, with the LSTM models at the
R models at the bottom.

d LSTM-Attention maintained their relative performance rank across both data sets. However, it is
onsider the data-specific differences in the results. For example, when comparing the performance of

ion on simulated and measured data sets, there is a significant increase in accuracy for the simulated
t al.: Preprint submitted to Elsevier Page 17 of 52
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.66% for RMSE, 47.85% for MAE, 1.95% for NSE and 0.81% for R. LSTM shows a similar trend with
of 45.85% for RMSE, 43.42% for MAE, 2.22% for NSE and 0.81% for R for the simulated data set.
to the significant difference in estimation accuracy between simulated and measured data, the persistence

es between the evaluation metrics of the training and testing sets was also observed. While significant
e seen for simple ML models, the same does not apply to the time series ML models. The largest
re observed for SVR with the rbf kernel for the simulated data, and SVR with the sigmoid kernel for the
. This leads to the conclusion that certain models lack generalization ability and require more diversity
hich is not the case when it comes to the discharge of tidal rivers and estuaries, especially when the
set is limited. Therefore, the preference is towards applying models that are not limited by the previous
enable a more robust and reliable discharge estimation, such as LSTM-Attention and LSTM.

Table 1: Performance indicators for all considered models.

Simulated Data Measured Data

RMSE MAE NSE R RMSE MAE NSE R
(m3/s) (m3/s) (m3/s) (m3/s)

Training

39.005 29.541 0.971 0.985 59.203 42.828 0.933 0.966
33.542 24.919 0.979 0.989 55.812 40.674 0.941 0.970
39.712 29.797 0.970 0.985 60.472 43.564 0.930 0.965

moid 47.756 37.784 0.957 0.978 70.557 54.090 0.905 0.952
37.392 28.176 0.973 0.987 59.572 43.360 0.932 0.966
31.147 23.761 0.982 0.991 48.500 35.601 0.955 0.977
35.240 27.561 0.976 0.988 58.916 41.490 0.934 0.969

tention 30.094 22.753 0.983 0.991 56.509 40.874 0.939 0.969
Testing

51.747 37.492 0.979 0.990 76.147 54.368 0.955 0.980
48.729 34.669 0.981 0.991 73.306 52.159 0.958 0.982
70.128 36.554 0.962 0.983 77.387 54.410 0.953 0.979

moid 53.010 40.978 0.978 0.990 82.155 58.992 0.947 0.947
53.797 36.341 0.977 0.989 73.130 52.260 0.958 0.983
48.428 34.739 0.982 0.991 73.212 51.836 0.958 0.982
t al.: Preprint submitted to Elsevier Page 18 of 52



Journal Pre-proof

LSTM
LSTM-At

Figures 6420

and highlight t421

values (above422

there is a large423

high discharge424

with low disc425

Overall, time-426

best agreemen427

When com428

of values for t429

points for the430

1500 m3/s. Ho431

which result in432

is confirmed b433

models show434

A Wilcoxo435

Appendix C. T436

models in com437

The LSTM438

The p-values439

with enough e440

improvements441

datasets, even442

differences be443

For the si444

the threshold,445

A. M. Mihel e
Jo
ur

na
l P

re
-p

ro
of

ML Approaches for Estimating Discharge in Microtidal Rivers

Table 1: Performance indicators for all considered models.

Simulated Data Measured Data

34.384 27.057 0.991 0.996 63.495 47.821 0.969 0.988
tention 29.473 22.530 0.993 0.997 57.406 43.201 0.974 0.989

and 7 visually compare the predicted discharge values with the observed discharge values for all models
heir scatter from the best-fit line. It is noticeable that most models had problems estimating high discharge
1500 m3/s), leading to both over- and under-predictions. This is most likely a result of data imbalance, as
r sample size for lower discharge values. In particular, DT, RF, LGBM and XGB tended to underestimate
values, while the SVR models tended to overestimate. The simple supervised model also had problems

harge values (below 500 m3/s), while LSTM and LSTM-Attention showed a very good agreement.
dependent ML models showed a more balanced prediction profile, with LSTM-Attention achieving the
t.
paring time-dependant models, LSTM and LSTM-Attention, we can clearly see a much larger spread

he measured data set compared to the simulated data set. In Figures 6 and 7, we see a smaller scatter of
LSTM-Attention model for the entire range of discharge values, even for the discharge extremes above
wever, larger errors are observed for the LSTM model due to its limitation of overpredicting extremes
the largest errors in estimations. To summarize, LSTM-Attention and LSTM are the best models, which

y both comprehensive error metrics (Table 1) and visual inspection of the results (Figures 6 and 7). These
high accuracy and reliability in predicting discharge in tidal rivers for different scenarios.
n signed-rank test was conducted to further analyze the evaluation metrics presented in Figure C.1 of
he test aimed to determine whether there are statistically significant differences between the time-series
parison to other models, for both the simulated and measured dataset.
-Attention model demonstrated the best performance, and this is confirmed by the Wilcoxon test results.

for LSTM-Attention were statistically significant when compared to LSTM and simpler ML models,
vidence to reject the null hypothesis. Similarly, the LSTM, also demonstrated significant performance
over simpler models. This shows that the time-series models used are effective and reliable for both
with noise present. However, when simple ML models are compared, there are instances when the

tween the models’ predictions do not always differ substantially.
mulated dataset, differences between RF, SVR-rbf, and XGBoost were minor, with p-values close to

indicating that their prediction capabilities are not significantly different. In the measured dataset,
t al.: Preprint submitted to Elsevier Page 19 of 52
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(a) DT (b) RF (c) SVR - sigmoid

SVR - rbf (e) LGBM (f) XGBoost

(g) LSTM (h) LSTM-Attention
Figure 6: Predicted versus observed discharges for simulated data set

d XGBoost showed similar performance, with larger p-values in comparisons like RF vs. LGBM and
ost, indicating no significant difference between models.
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(a) DT (b) RF (c) SVR - sigmoid

SVR - rbf (e) LGBM (f) XGBoost

(g) LSTM (h) LSTM-Attention
Figure 7: Predicted versus observed discharges for measured data set

on

hallenges and Limitations
n of ML in hydrology typically includes problems and challenges with data quality. In our case, the water

ained by the Croatian Meteorological and Hydrological Service agency at hourly intervals did not pose
s or issues. This is because those measurements had already undergone the official quality check. Hence,
corrections were required. However, the same does not apply to the discharge data.
t al.: Preprint submitted to Elsevier Page 21 of 52
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values were obtained via a different agency, Croatian Waters. Discharges are estimated by summing the
ulated from water level and velocity profiles measured by three horizontal ADCP devices installed under
to various reasons, such as malfunctions or maintenance services, the devices had short periods of missing
gths of several hours. Those short periods were filled by applying an interpolation on measurements
e other two devices. Additionally, the discharge data also contained high-frequency noise characteristic
asurements, especially in tidal rivers and estuaries, where tidal currents and saltwedge dynamics have
fluence. Therefore, a moving average of three hours was applied to the measured data to remove high-

se and outliers. An additional level of control was imposed by investigating simulated data, generated by
odel.
dy, we used both simulated and observed datasets to ensure a comprehensive analysis of the system’s
observed dataset contains some noise and irregularities inherent to field measurements, which can affect
f model evaluation. On the other hand, the simulated dataset is clearer, free from such inconsistencies,
ntrolled environment for comparison. By comparing the spectrograms in Figure D.1 of Appendix D., we
hile both datasets show similar trends in the strength spectrum, the observed data has more variability
ss different periods. This variability helps assess the model’s robustness under real-world conditions,

ulated data allows us to validate the model’s performance under ideal, noiseless conditions. This dual
res that our model can handle both ideal and real-world scenarios effectively.

d Assessment of Models Accuracy
acy of all considered ML models is discussed in more detail by evaluating their accuracy for different
es - specifically at low, medium, high and extremely high discharge range. Figure 8 illustrates the metric
ute error (MAE) for all ML models, where the discharges are categorized into bins with an interval of
ept the values above 1500 m3/s. The reason is that a very small number of samples refer to extreme
epresent a single event in the test data set. The figure also includes a histogram for each discharge range
frequency of each interval in the test data set.

s confirm that most ML models achieved better results for the simulated discharges compared to the
s. An exception is the SVR-rbf model, which shows poor performance for high discharges in the simulated
ermore, the following conclusions can be drawn:

scharges (below 300 m3/s): All models show similar behavior with minimal MAE, with LSTM and
Attention proving to be the best fit for both measured and simulated data sets. These results are expected
at the majority of the data (about 60%) falls within the mentioned range.
t al.: Preprint submitted to Elsevier Page 22 of 52
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(a) Simulated

(b) Measured
ulated MAE metric and histogram for different discharge ranges, for: a) simulated data set and b) measured

discharges (300 to 1050 m3/s): The models show comparable accuracy for the measured data set. For
ulated data set, however, LSTM and LSTM-Attention perform better than the other models. The second
category, pertaining up to 30% of data, shows the beginning of the larger differences in performance

the utilized models. This is especially evident towards the higher end of the range.

scharges (1050 to 1500 m3/s): LSTM and LSTM-Attention perform significantly better than the other
for both data sets. The trend of increasing MAE error also continues in this value category, which contains
0% of the total data set.
t al.: Preprint submitted to Elsevier Page 23 of 52
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ely high discharges (over 1500 m3/s): LSTM and LSTM-Attention perform several times better than
ML for both data sets, with MAE error lower than 100 m3/s. Less than 10% of the data is contained in
ge. Simple ML models’ error is above 160 m3/s for the simulated and 200 m3/s for the measured data
eby indicating the biggest disparities in accuracy.

lts can be explained by examining the histogram in Figure 8, which shows that high discharges are less
medium discharges and extremely high discharges are very rare. It is well known that traditional ML
ifficulty predicting rare values due to training biases where models prioritize common values, leading
performance on rare events (Chawla et al., 2002). Unbalanced distributions and a lack of representative
re values can impair the ML ability to generalize effectively. However, time-dependent ML models seem
is problem quite successfully. Therefore, both LSTM and LSTM-Attention exhibit a remarkable ability
nd extrapolate on new unseen data.
paring the two time-dependent ML models, LSTM-Attention performs slightly better than LSTM.

ured data set, LSTM-Attention improves the estimate in 7 out of 11 discharge ranges, with lower
rved only for the extremely high discharge range. Similarly, the results of the simulated data set show an
in 9 out of 11 discharge ranges, with insignificantly lower accuracy in the two medium discharge ranges

ore precisely, 9.83% as mean improvement. Taking into account the performance of the model in all
can conclude that unlike other models, where the data distribution significantly affects the accuracy

this is not the case with the novel LSTM-Attention model, and that is exactly why it is considered an
el for predicting discharge independent of river dynamics and extreme conditions.
, a comprehensive comparison illustrated in the Taylor diagram (Figure 9) provides a holistic assessment

tistical metrics, including standard deviation, R, and centered RMSE. The standard deviation of the
measured data set is almost identical, 358.28 and 358.34, respectively. In the simulated scenario (Figure
d LSTM-Attention show comparable performance based on the R metric, with a slight difference of only
r, LSTM has a slightly higher standard deviation (365.8) than LSTM-Attention (357.6) and a higher
indicating a possible tendency to over-predict extreme values.
the visualization of the simulated data set, the following can be concluded: The ability to minimize the
etter for the hybrid LSTM-Attention model, and at the same time it is better at capturing data variability.

with the measured data set (Figure 9b), LSTM-Attention and LSTM show superior performance based
MSE metrics. The inclusion of the standard deviation metric demonstrates the adequacy of both models

tion: 346.5, LSTM: 346.6) as their standard deviation closely matches the reference standard deviation
ed data set (358.28), although not as close as in the simulated scenario (358.34).
t al.: Preprint submitted to Elsevier Page 24 of 52
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(a) Simulated (b) Measured

(c) Simulated (detail) (d) Measured (detail)
or diagram for all considered ML models for: a) simulated data set, b) measured data set, c) simulated data
d d) measured data set (detail).

and 11 show the time series of the observed and estimated discharge by the two best models, LSTM and
ion, for the simulated and measured data set, respectively. Overall, both models show good agreement
lated data over the entire discharge range (Figure 10). A closer look at the maximum values in February
cellent agreement between the estimated and simulated discharges. However, at low discharges in August
dels seem to underestimate the amplitude of the daily oscillations reflecting the tidal dynamics, although

he daily mean discharge.
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ulated and estimated time series of discharges for the test data set: a) Oct 2020 - Dec 2021, b) Feb 2021,

sults are found for the measured data set, with both models showing good overall agreement (Figure 11).
e models have a slightly lower accuracy for the period of maximum flow in February 2021, although they
capture the daily oscillations. Also for the period of low flow in August 2021, both models underestimate
s even more than in the case of the simulated data set. This is most likely related to complex tidal-fluvial
here tidal oscillations can be dampened or amplified by the river discharge (Matte et al., 2014). In

operation of upstream hydropower plants further complicates the interaction between tidal and fluvial
ore, to capture the high-frequency oscillations, a hybrid time-dependant model that integrates a non-
monic analysis, such as NS_TIDE (Matte et al., 2014), could give more robust results for low flow
nother potential cause of the lower performance in capturing the daily oscillations during the low flow
e attributed to the 24-hour window of both models required to capture the maximum flows. Therefore,

igation of the influence of the window length on the performance of the LSTM and LSTM-Attention
ded for this type of problem.
t al.: Preprint submitted to Elsevier Page 26 of 52
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asured and estimated time series of discharges for the test data set: a) Oct 2020 - Dec 2021, b) Feb 2021,

ing Feature Importance
ion to use only water level data from multiple stations as input variables for machine learning models
e previous research conducted by Habib and Meselhe (2006) and Hidayat et al. (2014). These studies
the usefulness of incorporating water level data from multiple stations. This approach is particularly
tions where other parameters, such as meteorological or physical data, may not be readily accessible.
because the research is focused on a small salt-wedge estuary within a 25 km distance from the river
rological factors such as temperature, air pressure, precipitation, wind, and others parameters were
gible. This is in contrast to a recent study by Vu et al. (2023), which investigated the entire basin of
e, encompassed by a hydrographic network exceeding 135,000 km.
e importance of different water level stations where examined using correlaion, mutual information,
ture occlusion. The correlation matrix in Figures E.1 and E.2 of Appendix E. presents the relationship

r levels at four stations—Ušće, Opuzen, Kula Norinska, and Metković—and discharge measured at the
on. Water levels at Ušće show a low correlation with discharge at Metković with a correlation coefficient
levels at Opuzen have a moderate relationship with discharge at Metković, with a correlation coefficient

Norinska station shows a correlation of 0.53 with discharge at Metković, indicating a slightly stronger

t al.: Preprint submitted to Elsevier Page 27 of 52
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ompared to Opuzen, but still not highly predictive on its own. Water levels at Metković exhibit the
lation with discharge at the same location, with a coefficient of 0.56. Higher correlation is expected due to
nship between local water levels and discharge. Much higher correlations are found between water levels
tions. For example, Opuzen and Kula Norinska show a very high correlation (0.95), as do Kula Norinska
(0.97). These values suggest strong interdependencies between water levels at these locations. Overall,
hlight that while all water level measurements contribute to the prediction of discharge at Metković, the
vels at Metković and nearby stations (Kula Norinska and Opuzen) provide more predictive power than
distant stations like Ušće.
this approach is limited in accounting for the non-linear interactions between the features. Therefore,
ation was also applied, shown in Figure F.1 of Appendix F., which enables detecting both linear and

pendencies between variables. The mutual information score measures the dependence between each
put feature) and discharge, with higher values indicating a stronger relationship. In both simulated and
sets, the results are in line with the correlation analysis, water level at Metković is the most important
cting its proximity to the discharge measurement point. Water levels at Kula Norinska rank second, and
Opuzen have moderate importance, more so in measured data than simulated. Water levels at Ušće show
rtance in both datasets, having minimal influence on discharge. Overall, local stations like Metković and
a dominate discharge predictions, with downstream stations contributing less.
this assumption contradicts hydraulic principles, as tidal dynamics and sea levels have a critical impact
levels at the upstream stations, as well as on the flow patterns. Ignoring this feature may result in
fied system, reducing the accuracy and reliability of the model’s predictions. Based on the domain
e justify the inclusion of the sea level data from the tidal station.
the SHAP method to simple ML models (DT, RF, LGBM, and XGB), Figures G.1 to G.4 in section G.1 of
and Figures G.1 to G.4 in section G.2 of Appendix G., enabled us to thoroughly understand the influence
variables on discharge prediction, both at local and global significance levels. This study showed that
ificant variables in estimating tidal river discharge are the water level at the tidal station Ušće and the
tation for which the prediction is made (Metković). This supports our argument that the tidal station has
ffect on upstream water levels.
limitations of the SHAP approach for time-series models, the feature importance of the LSTM-based

aluated using feature occlusion and testing its performance on different combinations of input features.
eclined in nearly all scenarios when features were removed, as shown in Tables H.2 to H.4 of Appendix
ception was the LSTM model evaluated on the simulated dataset (Table H.1). Using only the water level

ković station resulted in the worst performance for all time-series models, highlighting the necessity
t al.: Preprint submitted to Elsevier Page 28 of 52
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additional features. Based on SHAP analysis, the water level at the tidal station Ušće proved to be
ortant next to the Metković station. For scenario including these two stations, performance improved

by 37-47% for the simulated dataset and around 73% for the measured dataset in terms of RMSE. This
e need to include water level data from the tidal station.

l variables, such as water levels at Opuzen and Kula Norinska, also improved the model. For Opuzen, the
ion model showed an 8% improvement for the simulated data and a 5-11% improvement for the measured
r, the LSTM model’s performance decreased by 7% with the inclusion of Opuzen for the simulated data.
a Norinska led to a 2% improvement in the LSTM-Attention model for the simulated data and a 1-11%
for the time-series models in the measured data. Again, the LSTM model’s performance declined by
a Norinska was added. These RMSE differences based on input feature combinations are visualized in
d 13. While midstream tidal stations also improved the model, their impact was smaller compared to the
cenario.
ion, while basic statistical methods like the correlation and mutual information can identify significant
r interpretation is limited in complex hydrological systems like tidal rivers and estuaries. By applying
re able to assess the importance of individual features for simpler ML models. For time-series models,
fferent approach was needed due to the specific limitations of RNN-based models. Testing various
of input variables with LSTM-based models highlighted the importance of including all stations to
ction accuracy, especially when using measured data.

(a) Simulated (b) Measured
Figure 12: LSTM prediction error with different input features

lity and Benefits of LSTM-Attention Model
ion of the attention mechanism significantly improved model performance across all predicted discharge
nhancement is due to several advantages of the LSTM-Attention model, which will be explained in this

-Attention model demonstrated better extrapolation abilities, leading to enhanced generalization
This is particularly important in modeling environmental processes, where extreme event frequency
t al.: Preprint submitted to Elsevier Page 29 of 52
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(a) Simulated (b) Measured
Figure 13: LSTM-Attention prediction error with different input features

ncrease over time. Historical data may not adequately capture these changes, making models capable
neralization essential. The attention mechanism’s ability to improve extrapolation has been observed in
Yang et al., 2024).
n models often struggle to predict values outside their training set, leading to overfitting or underfitting,
evious research Forghanparast and Mohammadi (2022). For example, in a tidal reach prediction study
21), RF, SVR, and LGBM models—also used in our study—struggled with extrapolating values beyond
ata. Our study confirms these findings, as evident in the predicted vs. observed plot and MAE metrics.
e limited by their reliance on local patterns, while SVR’s extrapolation depends heavily on data quality.
s on complex interactions, and XGB excels at minimizing loss, making it more reliable for extrapolation.
odels generally face challenges when predicting outside the training range.
uction of the attention mechanism mitigates this limitation in LSTM models by allowing them to focus on
ocal information for predictions. While LSTM retains information from earlier time steps, the attention
signs varying weights to hidden states based on their relevance, improving adaptability to non-stationary
feature makes the model more resilient to irrelevant and noisy data, a key limitation of simple ML
cannot identify temporal or sequential dependencies.

tudies also highlight the attention mechanism’s robustness in handling noise and outliers, with minimal
rops Li et al. (2024). Similarly, our study shows that LSTM is more resilient to noise compared to simpler
ith SVR being the least resilient.
lance is a critical issue in ML model development, as observed in Thanh et al. (2022), where predicting
ess frequent ranges was challenging. This trend is also evident in our study, especially for high (1000-1500
remely high discharges (above 1500 𝑚3∕𝑠).
t al.: Preprint submitted to Elsevier Page 30 of 52
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e limitations of simple ML models, they were included in this study due to their advantages in solving
blems, including handling non-linear data, transparency, resource efficiency, and fast training. Kernel-
optimal for smaller datasets, while DT, RF, XGB, and LGBM perform better with large-scale, high-
ata (Nagaradjane et al., 2024). When selecting a model, factors such as data size, complexity, and non-
ust be considered. While DT and SVR struggle with non-stationary data, ensemble models like RF, XGB,
apt well to changing patterns.
ining time is another important factor. In our study, the order of training time for hyperparameter

as RF, LSTM-Attention, SVR (RBF and sigmoid kernel), LSTM, LGBM, XGB, and DT. Although
ion had longer training times, its performance improvement justifies the computational cost.
ple ML models have their benefits, they fall short in predicting discharge in tidal reaches. LSTM-

rs several advantages, including identifying critical features, generalization, extrapolation, and handling
tasets. Compared to the stand-alone LSTM, this method enhances overall model performance, providing
e of benefits.

rison with Prior Research
s obtained are in agreement with findings from earlier studies. While it is not possible to directly compare
easurements, a general comparison can be performed, indicating that our results are expected. According

eselhe (2006), simple statistical ML approaches encounter difficulties in estimating extreme discharge
neural networks. Although our study is related to utilizing advanced RNNs and hybrid models, it confirms
tatement.
Willems (2014) utilized only simulated data to avoid common uncertainties, which are unavoidable when
red data. We have also emphasized this fact. However, the ranges of utilized water levels and discharge
rent from ours, as water levels are four times higher and discharge is around ten times lower. One of the
at led us to employ advanced RNNs is the limited ability of ANN when a small dataset is available. Its
power drops, and its interpretation is not as straightforward as that of decision trees.
idayat et al. (2014) significantly differed in the range of discharge values, but not in a visualized water

f Tenggarong, which contains the same range as our multiple utilized stations. The distinction between
gy and theirs pertains to the water level station at the discharge station of interest. However, their dataset
onsisting of less than two years, whereas ours spanned over a six-year period. The better performance of
n be attributed to these mentioned impediments. The simulated dataset had an RMSE improvement of
yat et al. (2014), around 1.5%, when compared to the overall discharge range, and the same percentage
ted dataset, around 3%.
t al.: Preprint submitted to Elsevier Page 31 of 52
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s of Thanh et al. (2022) can be partially compared with ours. Comparison is only viable for two metrics,
cause the water level and discharge range are ten times higher. The obtained results of the models that

d in our work (DT, RF, and SVR) deviate less than 1% from the mentioned metrics for the simulated
indicates the reliability of the methods used and the possibility of generalization, even though these are

zed tidal rivers. Also, the data distribution significantly differs because, unlike our data, where there is
t with extreme discharge values above 1500 𝑚3∕𝑠, the representation of such events is much higher in
tudy. Therefore, the RF model does not encounter significant difficulties when estimating those values
urs.
her investigating the performance of the LSTM model, the estimation precision is greater for the lowest
es. In contrast, it is larger for flood periods in both simulated and measured cases, as in Vu et al. (2023),
utilized additional meteorological parameters. Therefore, the omission of additional parameters did not
rmance in our case. However, the same conclusions are not drawn for the hybrid LSTM-Attention model,
the simulated scenario, as there are no significant disparities in the model’s performance during the

eme events.

ion
lex nature of tidal flow dynamics in rivers poses a major challenge to the development of effective
ment systems and timely risk warning protocols, especially in the face of ongoing climate change and
impacts. This study investigates the possibility of estimating discharge in microtidal rivers such as the

oatia using only water level data and ML models. To fully evaluate the performance of the model, we
ts with simulated and measured data sets. The study compares the performance of six simple supervised

F, SVR-rbf, SVR-simgoid, LGBM, XGB) with two time series models (LSTM and LSTM-Attention)
t statistical and graphical evaluation methods. The main findings and accomplishments obtained from
as follows:

ential of advanced RNN and hybrid modeling (Mihel et al., 2024) led to the application of LSTM and a
STM-Attention model with the main goal of improving discharge estimation for a microtidal river.

ge in a tidal reach of microtidal rivers can be estimated using only water level data from various
s, either upstream or/and downstream, which is inline with several previous studies (see a review paper
el et al. (2024)). Investigated ML models exhibit sufficient accuracy without incorporating additional
logical data. For that reason, including additional data is unnecessary and does not impair the model’s
ance, if the length of the tidal reach is limited, in particular less than 25 km as in the present case.
t al.: Preprint submitted to Elsevier Page 32 of 52
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dy presents the first comprehensive analysis between simple and complex time series ML models, with
ular focus on the novel LSTM-Attention model for a microtidal river. The results show that the ML time
odels are reliable and accurate in assessing river discharge based on water levels in both simulated and
d scenarios. In contrast, simple supervised models struggled and faced significant challenges in discharge
on, except at low flow conditions, where they showed satisfactory accuracy. Time series models had
l problems at high discharges and showed the lowest errors in both statistical and graphical analyses.

Attention and LSTM showed the least scatter of points around the best-fit line, with LSTM-Attention
a better fit in most discharge ranges, which was confirmed by the MAE metric across different discharge

The Taylor diagram confirmed these conclusions and showed that LSTM-Attention and LSTM achieved
t favorable combination of several statistical metrics. Consequently, LSTM-Attention proved to be the
d model due to its good correlation, reasonable deviation from the standard deviation of the observed
minimal overall residuals in both scenarios.

n extensive model analyses, we can, therefore, conclude that the LSTM-Attention model provides the
liable results for scenarios that include both simulated and measured flow values and are characterized
erous oscillations during both high and low flow periods.

e estimates during flood periods are essential for timely flood warnings, risk mitigation and public safety.
vel approach is suitable for reconstructing discharges in microtidal rivers at locations where discharge
ing stations have only recently been established or to fill missing data.

ine learning models provide valuable insights that can be translated into practical recommendations
urce management and environmental assessment. Unlike traditional methods that rely heavily on direct
surements, which can be logistically challenging and costly in tidal rivers and estuaries, our methodology
ver discharges from available water level data. This approach uses advanced machine learning techniques
the complex interactions between tidal influences and river flows, offering accurate and reliable discharge

resource management, the discharge estimates can inform decision-making processes related to water
ought mitigation, and flood risk management. Reliable discharge data can support the sustainable
f water resources for irrigation, ensuring that planned allocations align with the natural variability of the

ermore, this approach can significantly enhance flood forecasting capabilities by providing real-time,
n discharge data where only water level measurements are available. For instance, integrating these
rly warning systems can enable authorities to predict and respond to flood events with greater precision,

ly and effective evacuation plans and flood control measures. Moreover, the reconstructed discharge

t al.: Preprint submitted to Elsevier Page 33 of 52
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ed to calibrate hydrological models, improving flood risk assessments and management of flood control

text of ecosystem management, accurate discharge data can help monitor and conserve aquatic habitats
ly. These data can be used to assess the suitability of water conditions for various species, identify critical
d evaluate the impacts of human activities or climate change on ecosystems. For example, discharge data
implementation of environmental flows and the restoration of degraded habitats, ensuring that water
managed in a way that supports biodiversity and ecosystem health. This work contributes to a more
sustainable management of these dynamic and ecologically important water bodies.
tion ability of our tested approach presents a pilot study which can be applied to other tidal rivers and

ally, where different ML models, simple and time series, have been evaluated on two different datasets,
through a conducted simulation, while the other through measurements and estimations of government
any tidal river whose river flow dynamic can be precisely explained by solving a system of partial

uations (PDE), our analyzed machine learning architecture results and their performance can be partially
n though different hydro-meteorological conditions can be present.

nable to assume that the proposed ML method will perform even better in coastal rivers and estuaries
ounced stratification (well-mixed and partially-mixed estuaries), as micro-tidal estuaries have a week

etween water levels and discharge at low values (due to the two-layer salt-wedge structure). Conversely,
d divergent estuaries and deltas with numerous tributaries, there may be certain constraints if a network of
tations is not sufficiently densely distributed. In addition, the method may have a lower level of prediction
that are characterized by high flow and sections with long distances between adjacent stations, as the
undergo significant changes between adjacent stations. In such circumstances, it will likely be necessary
other meteorological parameters, such as wind and precipitation, or direct surface inflows during rainfall
hermore, it is probable that the introduction of an additional groundwater level parameter is necessary
exhibit a significant interaction with groundwater in order to accurately determine the hydrological

ng this method.
our results, we can make several suggestions for future research in this area. Tracking the length of
usion length and its influence on water level dynamics could certainly improve the predictive capabilities
. This could be achieved by combining numerical modeling with ML algorithms. The results could be
ed by decomposing the tidal signals into harmonic constituents and the residual, which could be used as
uts for ML models. Another way to improve the results is to include additional hydrological parameters
rature and salinity to account for their seasonal variability. Finally, time-frequency distributions, wavelet
n-stationary harmonic analyses could be used for this purpose by developing a hybrid ML method.
t al.: Preprint submitted to Elsevier Page 34 of 52
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Figure A.1: Cr
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. Lag Shift

oss-correlation between simulated water levels at different stations and discharges at the Metković station.
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oss-correlation between measured water levels at different stations and discharges at the Metković station.
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. Optimization of Models Hyperparameters

ptimal hyperparameters for different machine learning models using simulated and measured data sets.

odel Hyperparameter Search range Simulated Measured
best fit best fit

T
max_depth [10, 200]∗ 10 20
min_samples_leaf [10, 100]∗ 10 40
min_samples_split [10, 100]∗ 10 10
max_depth [10, 50]∗ 20 10
min_samples_leaf [10, 100]∗ 10 10
min_samples_split [10, 100]∗ 20 10
n_estimators [10, 200]∗ 130 90

R - rbf
C 0.001 𝑥 10𝑛 1000 1000

for n ∈ {0, 1, ..., 6}

𝛾𝑎 [0.0001, 0.0005, 0.001, 1 1
0.005, 0.01, 0.05, 0.1, 1]

𝜀𝑏 [0.0001, 0.0005, 0.001, 0.01 0.01
0.005, 0.01, 0.05, 0.1]

R - sigmoid

C 0.001 𝑥 10𝑛 1000 1000
for n ∈ {0, 1, ..., 6}

𝛾𝑎 [0.0001, 0.0005, 0.001, 0.005 0.0005
0.005, 0.01, 0.05, 0.1, 1]

𝜀𝑏 [0.0001, 0.0005, 0.001, 0.05 0.05
0.005, 0.01, 0.05, 0.1]

BM

learning_rate [0.0001, 0.0005, 0.001, 0.05 0.05
0.005, 0.01, 0.05]

max_depth [10, 50]∗ 50 10
n_estimators [10, 200]∗ 200 200
num_leaves [10, 100]∗ 100 10

GB

learning rate [0.0001, 0.0005, 0.001, 0.05 0.05
0.005, 0.01, 0.05]

∗
max_depth [10, 50] 10 10

t al.: Preprint submitted to Elsevier Page 38 of 52
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ptimal hyperparameters for different machine learning models using simulated and measured data sets.

odel Hyperparameter Search range Simulated Measured
best fit best fit

n_estimators [10, 200]∗ 140 120

TM

batch_size 64, 128, 256, 512 64 512
learning_rate [0.0001, 0.0005, 0.001, 0.0005 0.01

0.005, 0.01, 0.05]
hidden_units [8, 128]∗∗ 48 56

TM-Attention

batch_size 64, 128, 256, 512 64 64
learning_rate [0.0001, 0.0005, 0.001, 0.0001 0.001

0.005, 0.01, 0.05]
hidden_units [8, 128]∗∗ 112 96

𝑎𝑚𝑚𝑎; 𝑏𝑒𝑝𝑠𝑖𝑙𝑜𝑛
𝑡𝑒𝑝 = 10; ∗∗𝑠𝑡𝑒𝑝 = 8
t al.: Preprint submitted to Elsevier Page 39 of 52
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Figure C.1: W
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. Wilcoxon Signed-Rank Test

(a) Simulated

(b) Measured
ilcoxon Signed-Rank test when comparing errors from different models. The matrix shows p-values (rounded
cimal) for: a) simulated data set, and b) measured data set.
t al.: Preprint submitted to Elsevier Page 40 of 52
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Appendix D771

Figure D.1: Po
their distributi
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. Power Spectral Density

wer spectral density for the water levels from the tidal station to the most upstream part of the tidal reach,
on over different periods (from 6 to 48 h), and comparison between simulated and measured datasets.
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Appendix E772

Figure E.1: C
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. Correlation Matrix

orrelation matrix for simulated water level and discharge data at different stations (Ušće, Opuzen, Kula
Metković). The parameter 𝐻 denotes water level, while 𝑄 denotes discharge. Lower left panels show
ts, diagonal panels show distribution plots for each parameter, and upper right panels show correlation
t al.: Preprint submitted to Elsevier Page 42 of 52
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Figure E.2: C
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orrelation matrix for measured water level and discharge data at different stations (Ušće, Opuzen, Kula
Metković). The parameter 𝐻 denotes water level, while 𝑄 denotes discharge. Lower left panels show
ts, diagonal panels show distribution plots for each parameter, and upper right panels show correlation
t al.: Preprint submitted to Elsevier Page 43 of 52
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. Feature Importance Based on Mutual Information

ature importance based on mutual information for discharge estimation with ranking of features from the
ast important for two datasets: (a) Simulated and (b) Measured
𝐻 denotes water level at a station in brackets.
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. Explainable Artificial Intelligence: SHAP method
on provides SHAP analysis for simple ML models, with global and local explainability. The global
des the overall feature importance, while local is focused on each prediction and their contribution to

ed data scenario

Figure G.1: DT SHAP analysis: a) Global and, b) Local Interpretation

Figure G.2: RF SHAP analysis: a) Global and, b) Local Interpretation
t al.: Preprint submitted to Elsevier Page 45 of 52
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Figure G.3: LGBM SHAP analysis: a) Global and, b) Local Interpretation

Figure G.4: XGB SHAP analysis: a) Global and, b) Local Interpretation

ed data scenario

Figure G.5: DT SHAP analysis: a) Global and, b) Local Interpretation
t al.: Preprint submitted to Elsevier Page 46 of 52
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Figure G.6: RF SHAP analysis: a) Global and, b) Local Interpretation

Figure G.7: LGBM SHAP analysis: a) Global and, b) Local Interpretation

Figure G.8: XGB SHAP analysis: a) Global and, b) Local Interpretation

. Feature Occlusion
t al.: Preprint submitted to Elsevier Page 47 of 52
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Metrics Single Input𝑎 Two Inputs𝑏 Three Inputs𝑐 Four Inputs𝑑

RMSE 118.727 31.267 33.708 34.384
MAE 83.864 24.125 25.894 27.054
NSE 0.890 0.992 0.991 0.991
R 0.962 0.996 0.996 0.996
𝑎 Input feature: Metković
𝑏 Input features: Ušće and Metković
𝑐 Input features: Ušće, Opuzen, and Metković
𝑑 Input features: Ušće, Opuzen, Norin, and Metković

re occlusion on LSTM model performance on simulated dataset. Four different scenarios are tested, the first
he target station data, the second contains the target and a tidal station, the third contains the target, one
a tidal station, and the fourth contains the target, two midstreams and a tidal station.

Metrics Single Input𝑎 Two Inputs𝑏 Three Inputs𝑐 Four Inputs𝑑

RMSE 117.506 73.497 64.744 63.495
MAE 84.356 54.454 48.684 47.495
NSE 0.892 0.958 0.967 0.969
R 0.963 0.982 0.987 0.988
𝑎 Input feature: Metković
𝑏 Input features: Ušće and Metković
𝑐 Input features: Ušće, Opuzen, and Metković
𝑑 Input features: Ušće, Opuzen, Norin, and Metković

re occlusion on LSTM model performance on measured dataset. Four different scenarios are tested, the first
he target station data, the second contains the target and a tidal station, the third contains the target, one
a tidal station, and the fourth contains the target, two midstreams and a tidal station.

Metrics Single Input𝑎 Two Inputs𝑏 Three Inputs𝑐 Four Inputs𝑑

RMSE 126.045 33.254 30.334 29.473
MAE 89.793 24.893 23.157 22.530
NSE 0.876 0.991 0.993 0.993
R 0.948 0.996 0.997 0.997
𝑎 Input feature: Metković
𝑏 Input features: Ušće and Metković
𝑐 Input features: Ušće, Opuzen, and Metković
𝑑 Input features: Ušće, Opuzen, Norin, and Metković

re occlusion on LSTM-Attention model performance on simulated dataset. Four different scenarios are tested,
ins only the target station data, the second contains the target and a tidal station, the third contains the
dstream and a tidal station, and the fourth contains the target, two midstreams and a tidal station.

Metrics Single Input𝑎 Two Inputs𝑏 Three Inputs𝑐 Four Inputs𝑑

RMSE 129.384 68.744 64.709 57.406
MAE 91.337 52.539 48.626 43.201
NSE 0.870 0.963 0.967 0.974
R 0.959 0.985 0.986 0.989
𝑎 Input feature: Metković
𝑏 Input features: Ušće and Metković
𝑐 Input features: Ušće, Opuzen, and Metković
𝑑 Input features: Ušće, Opuzen, Norin, and Metković

re occlusion on LSTM-Attention model performance on measured dataset. Four different scenarios are tested,
ins only the target station data, the second contains the target and a tidal station, the third contains the
dstream and a tidal station, and the fourth contains the target, two midstreams and a tidal station.
t al.: Preprint submitted to Elsevier Page 48 of 52
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